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N-TUPLE ORBITS AND N-TUPLE WEAK ORBITS
TENDING TO INFINITY

SONJA MANČEVSKA 1 AND MARIJA OROVČANEC 2

Abstract. In this paper we give a sufficient condition for n pairwise commuting
and bounded linear operators on an infinite dimensional complex Banach space
X, which will imply that the space contains a dense set of vectors each with a
corresponding n-tuple orbit tending to infinity. The same condition is sufficient
to imply that the product of X and its dual space contains a dense set of pairs,
each with a corresponding n-tuple weak orbit tending to infinity.

1. INTRODUCTION

Throughout this paper, unless otherwise stated, X will denote a complex, infi-
nite dimensional Banach space, B(X) the algebra of all bounded linear operators
on X and X∗ the dual space of X i.e., the space of all bounded linear functionals
x∗ : X → C. As usual, for x ∈ X and x∗ ∈ X∗ we will denote ⟨x, x∗⟩ := x∗(x).
For the direct product X × X∗ we assume that is a Banach space, in a sense of
the direct sum of X and X∗, with one of the following norms: ∥(x, x∗)∥∞ =

max {∥x∥ , ∥x∗∥} or ∥(x, x∗)∥p =
(
∥x∥p + ∥x∗∥p)1/p for 1 ≤ p < ∞. Z+ will

denote the set of all nonnegative integers and
Zn

+ = {(k1, k2, ..., kn) : ki ∈ Z+, 1 ≤ i ≤ n}.
If T1, T2, ..., Tn ∈ B(X) are pairwise commuting operators, the n-tuple orbit of

the vector x ∈ X (or the orbit of x under the n-tuple T = (T1, T2, ..., Tn)) is the set

Orb({Ti}n
i=1, x) = Orb(T, x) =

{
Tk1

1 Tk2
2 ...Tkn

n x : (k1, k2, ..., kn) ∈ Zn
+

}
, (1.1)

and the n-tuple weak orbit of the pair (x, x∗) ∈ X × X∗ is the set

Orb({Ti}n
i=1, x, x∗) = Orb(T, x, x∗)

=
{〈

Tk1
1 Tk2

2 ...Tkn
n x, x∗

〉
: (k1, k2, ..., kn) ∈ Zn

+

}
. (1.2)

By the definition given in [15], the n-tuple orbit (1.1) tends to infinity if
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lim
ki→∞

∥∥∥Tk1
1 Tk2

2 ...Tkn
n x
∥∥∥ = ∞, for every k j ∈ Z+, j ̸= i, and every 1 ≤ i ≤ n.

In [8] and [10] we gave a similar definition for n-tuple weak orbits: the n-tuple
weak orbit (1.2) tends to infinity if

lim
ki→∞

∣∣∣〈Tk1
1 Tk2

2 ...Tkn
n x, x∗

〉∣∣∣ = ∞, for every k j ∈ Z+, j ̸= i, and every 1 ≤ i ≤ n.

For n = 1, the sets in (1.1) and (1.2) are sequences of form:

Orb(T, x) = {Tnx : n = 0, 1, 2, ...} ⊂ X,

and

Orb(T, x, x∗) = {⟨Tnx, x∗⟩ : n = 0, 1, 2, ...} ⊂ C.

These sequences are usually referred as single orbit (or simply orbit) of the vector
x ∈ X and single weak orbit (or simply weak orbit) of the pair (x, x∗) ∈ X × X∗

under the operator T, respectively. Clearly, if Orb({Ti}n
i=1, x) tends to infinity,

then Orb(Ti , x) will also tend to infinity, for every i ∈ {1, 2, ..., n}. The same holds
for the weak orbits: if Orb({Ti}n

i=1, x, x∗) tends to infinity, then Orb(Ti , x, x∗) will
also tend to infinity, for every i ∈ {1, 2, ..., n}. As corollaries of the main results
in [7]-[10], we’ve obtained that, if T1, T2, ..., Tn ∈ B(X) are operators such that
r(Ti) > 1, for all i ∈ {1, 2, ..., n}, then:

(i) X will contain a dense set D such that Orb(Ti , x) tends to infinity for all
x ∈ D and all i ∈ {1, 2, ..., n} and if, in addition, the operators T1, T2, ..., Tn
are pairwise commuting and have at least one of the following properties:

(P.1) Ti is bounded bellow, for every i ∈ {1, 2, ..., n},
(P.2) (Tk

i − Tk
j )k≥0 is a norm bounded sequence, for all i, j ∈ {1, 2, ..., n},

then the m-tuple orbit Orb({Tij}
m
j=1, x) will tend to infinity, for every 2 ≤

m ≤ n, 1 ≤ i1 < i2 < . . . < im ≤ n and x ∈ D,

(ii) X ×X∗ will contain a dense set D′ such that Orb(Ti , x, x∗) tends to infinity,
for all (x, x∗) ∈ D′ and all i ∈ {1, 2, ..., n} and if, in addition, the operators
T1, T2, ..., Tn are pairwise commuting and have the property (P.2), then
the m-tuple weak orbit Orb({Tij}

m
j=1, x, x∗) will tend to infinity for every

2 ≤ m ≤ n, 1 ≤ i1 < i2 < . . . < im ≤ n and x ∈ D′ .

The conditions (P.1) and (P.2) are quite rigorous. Moreover, for any operators
T1, T2, ..., Tn such that r(Ti) > 1, i ∈ {1, 2, ..., n}, the condition (P.2) will imply
that all these operators must have the same spectral radius. In this paper we are
going to show that vectors in X with n-tuple orbits and pairs in X × X∗ with
n-tuple weak orbits tending to infinity exist whenever T1, T2, ..., Tn are pairwise
commuting operators such that r(Ti) > 1 for every i ∈ {1, 2, ..., n}, without any
additional conditions.

2. PRELIMINARIES

As usual, for a single operator T ∈ B(X), σ(T), σp(T) and σap(T) will denote the
spectrum, the point spectrum and the approximate point spectrum of T.
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If T = (T1, T2, ..., Tn) is an n-tuple of pairwise commuting operators on X, the
joint approximate point spectrum (or the left approximate spectrum) of T is the
set

σπ(T) = σπ(T1, T2, . . . , Tn)
= {(λ1, λ2, . . . , λn) ∈ Cn : (∀ε > 0)(∃x ∈ X) s.t. ∥x∥ = 1∧

∥(Ti − λi)x∥ < ε, 1 ≤ i ≤ n} .
For alternative equivalent definitions of the joint approximate point spectrum,

we refer to [1], [3] and [11]. For every n-tuple of pairwise commuting operators
T = (T1, T2, ..., Tn), σπ(T) is nonvoid and compact set ([3, Property 2]), which has
the following property, usually referred as the spectral mapping theorem for the
joint approximate point spectrum.

Theorem 1. [3, Theorem 1] If T = (T1, T2, ..., Tn) is an n-tuple of pairwise commuting
operators and f is an m-tuple of polynomials in n variables (so that f (T) is defined and
is an m-tuple of commuting operators), then σπ( f (T)) = f (σπ(T)).

Clearly, σap(T) = σπ(T) for every operator T ∈ B(X) and, by [4, Theorem 1],

r(T) = max
{
|λ| : λ ∈ σap(T)

}
, for every T ∈ B(X). (2.1)

We also need the following two results.

Theorem 2. [13, Theorem V.37.14] Let X and Y be Banach spaces and (Tn)n≥1 be a
sequence of operators in B(X, Y). Let (an)n≥1 be sequence of positive numbers such that
∑∞

n=1 an < ∞. Then there exists x ∈ X such that ∥Tnx∥ ≥ an ∥Tn∥, for all n ≥ 1.
Moreover, it is possible to choose such an x in each ball in X of radius greater than
∑∞

n=1 an.

Theorem 3. [13, Theorem V.39.5] Let X and Y be Banach spaces and (Tn)n≥1 be a
sequence of operators in B(X, Y). Let (an)n≥1 be sequence of positive numbers with

∑∞
n=1 a1/2

n < ∞. Then there are x ∈ X and y∗ ∈ Y∗ such that |⟨Tnx, y∗⟩| ≥ an ∥Tn∥,
for all n ≥ 1. Moreover, given balls B ⊂ X and B∗ ⊂ Y∗ of radii greater than

∑n≥1 a1/2
n < ∞, then it is possible to find x ∈ B and y∗ ∈ B∗ with this property.

3. N-TUPLE ORBITS TENDING TO INFINITY

Theorem 4. If T = (T1, T2, . . . , Tn) is an n-tuple of pairwise commuting operators on an
infinite dimensional complex Banach space X such that r(Ti) > 1, for every 1 ≤ i ≤ n,
then there is a dense set D1 ⊂ X such that the n-tuple orbit Orb({Ti}n

i=1, x) tends to
infinity for every x ∈ D1.

Proof. Let x0 ∈ X and ε > 0. Since r(Ti) > 1, for all 1 ≤ i ≤ n, by (2.1) there are
λ1, λ2, . . . , λn ∈ C such that λi ∈ σap(Ti) and |λi| = r(Ti) > 1, 1 ≤ i ≤ n. Let q ∈ R

and C > 0 are such that

1 < q < min {|λ1| , |λ2| , ..., |λn|} , (3.1)

C
(

q
q − 1

)n
< ε. (3.2)
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If p1 < p2 < . . . < pn are the first n prime numbers, let g : Zn
+ → Z+ be the

injective mapping defined with g(k1, k2, . . . , kn) = pk1
1 pk2

2 . . . pkn
n and let

ag(k1 ,k2 ,...,kn) =
C

qk1+k2+...+kn
> 0, for (k1, k2, . . . , kn) ∈ Zn

+,

Sg(k1 ,k2 ,...,kn) = Tk1
1 Tk2

2 . . . Tkn
n , for (k1, k2, . . . , kn) ∈ Zn

+.

By the first inequality in (3.1) and by (3.2) we have

∑
(k1 ,k2 ,...,kn)∈Zn

+

ag(k1 ,k2 ,...,kn) =
∞
∑

k1=0

∞
∑

k2=0
. . .

∞
∑

kn=0

C
qk1+k2+...+kn

= C
n
∏
i=1

(
∞
∑

ki=0

1
qki

)
= C

(
q

q−1

)n
< ε.

Hence, applying Theorem 2 on the sequence {ag(k1 ,k2 ,...,kn) : (k1, k2, . . . , kn) ∈ Zn
+}

and the sequence {Sg(k1 ,k2 ,...,kn) : (k1, k2, . . . , kn) ∈ Zn
+}, we can find a vector x ∈ X

such that ∥x − x0∥ < ε and∥∥∥Tk1
1 Tk2

2 ...Tkn
n x
∥∥∥ ≥ C

qk1+k2+...+kn

∥∥∥Tk1
1 Tk2

2 ...Tkn
n

∥∥∥
≥ C

qk1+k2+...+kn r(Tk1
1 Tk2

2 ...Tkn
n ), ∀(k1, k2, ..., kn) ∈ Zn

+.
(3.3)

If (k1, k2, ..., kn) ∈ Zn
+ and pk1 ,k2 ,...,kn : Cn → C is the polynomial defined with,

pk1 ,k2 ,...,kn (z1, z2, . . . , zn) = zk1
1 zk2

2 . . . zkn
n ,

then, by Theorem 1,

σap(Tk1
1 Tk2

2 ...Tkn
n ) = σap(pk1 ,k2 ,...,kn (T1, T2, ..., Tn))

= pk1 ,k2 ,...,kn (σπ(T1, T2, ..., Tn))
=

{
zk1

1 zk2
2 ...zkn

n : (z1, z2, ..., zn) ∈ σπ(T1, T2, ..., Tn)
}

.
(3.4)

On the other hand, if pi : Cn → C are the polynomials defined with,

pi(z1, z2, . . . , zn) = zi , 1 ≤ i ≤ n,

then (again by Theorem 1),

pi(σπ(T1, T2, ..., Tn)) = σπ(pi(T1, T2, ..., Tn)) = σap(Ti), for all 1 ≤ i ≤ n. (3.5)

Since λi ∈ σap(Ti), (3.5) implies that there are µ
(i)
1 , . . . , µ

(i)
i−1, µ

(i)
i+1, . . . , µ

(i)
n ∈ C such

that,

(µ(i)
1 , . . . , µ

(i)
i−1, λi , µ

(i)
i+1, . . . , µ

(i)
n ) ∈ σπ(T1, T2, . . . , Tn).



N-TUPLE ORBITS AND N-TUPLE WEAK ORBITS TENDING TO INFINITY 29

Then, by (2.1), (3.3) and (3.4),∥∥∥Tk1
1 Tk2

2 ...Tkn
n x
∥∥∥

≥ C
qk1+k2+...+kn r(Tk1

1 Tk2
2 ...Tkn

n )

= C
qk1+k2+...+kn max

{
|λ| : λ ∈ σap(Tk1

1 Tk2
2 ...Tkn

n )
}

= C
qk1+k2+...+kn max

{∣∣∣zk1
1 zk2

2 ...zkn
n

∣∣∣ : (z1, z2, ..., zn) ∈ σπ(T1, T2, ..., Tn)
}

≥ C |λi |ki

qki

 n
∏
j=1
j ̸=i

∣∣∣µ(i)
j

∣∣∣kj

qki

 , for all (k1, k2, ..., kn) ∈ Zn
+.

(3.6)

Since |λi| > q, from (3.6) we obtain that, lim
ki→∞

∥∥∥Tk1
1 Tk2

2 . . . Tkn
n x
∥∥∥ = ∞, for all

k j ∈ Z+, j ̸= i. And this holds for every 1 ≤ i ≤ n. □

Before we state some corollaries of Theorem 4, we’ll give one simple example.

Example 3.1. Let {en : n ∈ N} be the canonical base of ℓ1 ≡ ℓ1(N) and B : ℓ1 →
ℓ1 be the backward shift,

Ben =
{

0, if n = 1
en−1, if n ≥ 1 , n ∈ N.

For this operator (see, for example [5, Corollary 6.6]),

σp(B) = {λ ∈ C : |λ| < 1},

Ker(B − λ) = {α(1, λ, λ2, . . .) : α ∈ C}, for every λ ∈ σp(B),
σ(B) = {λ ∈ C : |λ| ≤ 1} = σap(B).

Let a1, a2, ..., an ∈ R and λ0 ∈ C are such that

1 < |λ0|−1 < a1 < a2 < . . . < an, (3.7)

and let
Ti = aiB, 1 ≤ i ≤ n.

It can be easily verified, directly or by applying the spectral mapping theorems for
the spectrum and the approximate point spectrum (the later one can be regarded
as a special case of Theorem 1 for one operator and the polynomials pi : C → C

defined with pi(z) = aiz, 1 ≤ i ≤ n) that

σ(Ti) = σ(aiB) = {λ ∈ C : |λ| ≤ ai} = σap(aiB),

and
σp(Ti) = σp(aiB) = {λ ∈ C : |λ| < ai},

for all 1 ≤ i ≤ n.
Clearly, T1, T2, ..., Tn are pairwise commuting operators. But, none of these

operators is bounded below (for example, ∥Tie1∥ = 0 < C ∥e1∥, for all C > 0 and
1 ≤ i ≤ n) and they do not satisfy the condition (P.2) (since r(Ti) = ai > 1, if the
operators satisfy (P.2), they will have the same spectral radius, which contradicts
(3.7)).
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Independently of Theorem 4 we will show that in every open ball in ℓ1 there is
a vector x such that Orb({Ti}n

i=1, x) tends to infinity.
Let y = (yn)n≥1 ∈ ℓ1 and ε > 0. By the choice of λ0, there is n0 = n0(ε) ∈ N

such that ∑∞
j=n0+1

∣∣yj
∣∣ < ε/3 and ∑∞

j=n0+1 |λ0|j−1 < ε/3. Let

xλ0 = (y1, . . . , yn0 , λn0
0 , λn0+1

0 , . . .) =
n0

∑
j=1

yjej +
∞

∑
j=n0+1

λ
j−1
0 ej.

Then, ∥∥y − xλ0

∥∥ =
∞

∑
j=n0+1

∣∣∣yj − λ
j−1
0

∣∣∣ ≤ ∞

∑
j=n0+1

∣∣yj
∣∣ +

∞

∑
j=n0+1

|λ0|j−1 < ε,

and, if (k1, k2, . . . , kn) ∈ Zn
+ is such that k1 + k2 + . . . + kn ≥ n0,∥∥∥Tk1

1 Tk2
2 ...Tkn

n xλ0

∥∥∥ =
∥∥∥ak1

1 ak2
2 . . . akn

n Bk1+k2+...+kn xλ0

∥∥∥ = ak1
1 ak2

2 ... akn
n
|λ0|k1+k2+...+kn

1 − |λ0|
.

Since (3.7) implies that ai |λ0| > 1, for all 1 ≤ i ≤ n, we have

lim
ki→∞

∥∥∥Tk1
1 Tk2

2 . . . Tkn
n xλ0

∥∥∥ =

 1
1−|λ0|

n
∏
j=1
j ̸=i

(
aj |λ0|

)kj

 lim
ki→∞

(ai |λ0|)ki

= ∞, for all k1, . . . , ki−i , ki+i . . . , kn ∈ Z+ .

Remark 3.1: For the vector xλ0 in the previous example Orb(aiB, xλ0 ) tends to
infinity for every 1 ≤ i ≤ n. But the operators a1B, a2B, . . . , anB do not share the
same set of vectors such that each one of them has an orbit tending to infinity
under each of the operators. For example, if µ ∈ C is such that a1 ≤ |µ|−1 < a2,
and xµ is the vector constructed in a similar way as xλ0 , i.e.

xµ = (y1, . . . , yn1 , µn1 , µn1+1, . . .) =
n1

∑
j=1

yjej +
∞

∑
j=n1+1

µj−1ej,

for some sufficiently large n1, then Orb({aiB}n
i=2, xµ) and, consequently Orb(aiB, xµ),

will tend to infinity, for each 2 ≤ i ≤ n. But Orb(a1B, x) does not tend to infinity:∥∥∥Tk1
1 xµ

∥∥∥ = ak1
1

∥∥∥Bk1 xµ

∥∥∥ =
ak1

1 |µ|k1

1 − |µ| , for all k1 > n1,

and consequently, since a1 ≤ |µ|−1,

lim
k1→∞

∥∥∥Tk1
1 xµ

∥∥∥ = lim
k1→∞

ak1
1 |µ|k1

1 − |µ| =

{
1

1−|µ| , if a1 = |µ|−1

0, if a1 < |µ|−1.

Remark 3.2: T ∈ B(X) is hypercyclic operator if there is a vector x ∈ X such that
Orb(T, x) is dense in X. The vector x with this property is said to be hypercyclic
vector for T. If T is hypercyclic operator, then the set of all hypercyclic vectors for
T is dense Gδ set in X ([2, Lemma III.5.1], [13, Theorem V.38.2]). By definition,
the n-tuple of pairwise commuting operators T = (T1, T2, ..., Tn) is a hypercyclic
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n-tuple if the there is a vector x ∈ X such that Orb({Ti}n
i=1, x) is dense in X ([6]). If

at least one of the operators T1, T2, ..., Tn is hypercyclic, or the semigroup gener-
ated by T1, T2, ..., Tn i.e., T =

{
Tk1

1 Tk2
2 ...Tkn

n : (k1, k2, ..., kn) ∈ Zn
+

}
, contains a hy-

percyclic operator S (which may occur even if none of the operators T1, T2, . . . , Tn
is hypercyclic, a simple example will be T = (2I, 2−1B), where I is the identity
operator, B the backward shift on ℓ1 and S = (2I)2 · (2−1B) = 2B), then the n-
tuple T = (T1, T2, . . . , Tn) is hypercyclic ([6, Proposition 2.1]). By [14, Theorem 1],
each of the operators Ti = aiB, 1 ≤ i ≤ n, in Example 3.1 hypercyclic. Hence
T = (T1, T2, ..., Tn) is a hypercyclic n-tuple and ℓ1 will contain at least one dense
Gδ set of vectors x such that,

Orb({aiB}n
i=1, x) =

{
ak1

1 ak2
2 . . . akn

n Bk1+k2+...+kn x : (k1, k2, . . . , kn) ∈ Zn
+

}
,

is dense in ℓ1.

Corollary 4.1. If T = (T1, T2, . . . , Tn) is an n-tuple of pairwise commuting operators on
an infinite dimensional complex Banach space X such that r(Ti) > 1 for all 1 ≤ i ≤ n,
then there is a dense set D∗

1 ⊂ X∗ such that the n−tuple orbit Orb({T∗
i }n

i=1, x∗) tends
to infinity for every x∗ ∈ D∗

1 .

Proof. If T1, T2, ..., Tn are pairwise commuting operators on X, so will be their
Banach space adjoints T∗

1 , T∗
2 , ..., T∗

n ∈ B(X∗). Having in mind that T∗ has the
same spectrum as T and hence, r(T∗) = r(T), the conclusion follows by Theorem
4. □

Corollary 4.2. If T = (T1, T2, . . . , Tn) is an n-tuple of pairwise commuting invertible
operators on an infinite dimensional complex Banach space X such that,

{λ ∈ C : |λ| > 1} ∩ σ(Ti) ̸= ∅ ̸= {λ ∈ C : |λ| < 1} ∩ σ(Ti), (3.8)

for all 1 ≤ i ≤ n, then there is a dense set D(1)
1 ⊂ X such that the 2n-tuple orbit

Orb({Ti}n
i=1 ∪ {T−1

i }n
i=1, x) tends to infinity, for every x ∈ D(1)

1 .

Proof. If T1, T2, ..., Tn are pairwise commuting invertible operators on X, then
T−1

1 , T−1
2 , ..., T−1

n will also pairwise commute and

TiT−1
j = T−1

j TjTiT−1
j = T−1

j TiTjT−1
j = T−1

j Ti ,

for all i, j ∈ {1, 2, ..., n}. Since σ(T−1) = {λ−1 : λ ∈ σ(T)} for every invertible
operator T ∈ B(X), if T1, T2, ..., Tn satisfy the conditions in (3.8), then r(Ti) > 1
and r(T−1

i ) > 1, for all 1 ≤ i ≤ n, and the conclusion follows from Theorem
4. □

Remark 3.3: Every invertible operator T ∈ B(X) is bounded below:

∥Tx∥ ≥
∥∥∥T−1

∥∥∥ −1 ∥x∥ , for every x ∈ X,

Hence, if T1, T2, ..., Tn are pairwise commuting invertible operators, then the oper-
ators T1, T2, ..., Tn, T−1

1 , T−1
2 , ..., T−1

n will satisfy the condition (P.1). If, in addition,
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the operators satisfy the conditions in (3.8), then the conclusion in Corollary 4.2
can be derived from [7, Theorem 2.2].

In the next two corollaries we assume that T∗ denotes the Hilbert space adjoint
of the operator T.

Corollary 4.3. If T = (T1, T2, ..., Tn) is an n-tuple of pairwise commuting operators on
an infinite dimensional complex Hilbert space H such that r(Ti) > 1 for all 1 ≤ i ≤ n,
then there is a dense set D(2)

1 ⊂ H such that the n-tuple orbit Orb({T∗
i }n

i=1, x) tends to
infinity for every x ∈ D(2)

1 .

Proof. If T1, T2, ..., Tn are pairwise commuting operators on H, then the corre-
sponding Hilbert space adjoints T∗

1 , T∗
2 , ..., T∗

n ∈ B(H) will also commute pair-
wise. Since the spectrum of a Hilbert space adjoint T∗ of an operator T ∈ B(H)
satisfies σ(T∗) = {λ̄ : λ ∈ σ(T)} and hence, r(T∗) = r(T), the conclusion follows
by Theorem 4. □

Corollary 4.4. If T = (T1, T2, ..., Tn) is an n-tuple of pairwise commuting normal op-
erators on an infinite dimensional complex Hilbert space H such that r(Ti) > 1 for
all 1 ≤ i ≤ n, then there is a dense set D(3)

1 ⊂ H such that the 2n-tuple orbit
Orb({Ti}n

i=1 ∪ {T ∗
i }n

i=1, x) tends to infinity for every x ∈ D(3)
1 .

Proof. If T1, T2, ..., Tn are pairwise commuting normal operators on H then, by the
Fuglede-Putnam theorem T1, T2, ..., Tn, T∗

1 , T∗
2 , ..., T∗

n will be pairwise commuting
normal operators on X. Since r(T∗) = ∥T∗∥ = ∥T∥ = r(T) for every normal opera-
tor T ∈ B(H), the conclusion follows from Theorem 4. □

4. N-TUPLE WEAK ORBITS TENDING TO INFINITY

In the section we are going to give only the corresponding result of Theorem 4
for n-tuple weak orbits.

Theorem 5. If T = (T1, T2, ..., Tn) is an n-tuple of pairwise commuting operators on an
infinite dimensional complex Banach space X such that r(Ti) > 1 for all 1 ≤ i ≤ n, then
there is a dense set D2 ⊂ X × X∗ such that the n-tuple weak orbit Orb({Ti}n

i=1, x, x∗)
tends to infinity for every (x, x∗) ∈ D2.

Proof. Let (x0, x∗0) ∈ X × X∗ and ε > 0. If λ1, λ2, ..., λn ∈ C are as in the proof of
Theorem 4, let q ∈ R and C > 0 are such that,

1 < q < q2 < min {|λ1| , |λ2| , ..., |λn|} ,

and

C
(

q
q − 1

)n
<

ε

21/p
,

assuming that p = ∞ if the norm on X × X∗ is the max-norm. Now, let

ag(k1 ,k2 ,...,kn) =
C2

q2(k1+k2+...+kn) > 0, for (k1, k2, ..., kn) ∈ Zn
+,
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where g : Zn
+ → Z+ is as in the proof of Theorem 4. Then

∑
(k1 ,k2 ,...,kn)∈Zn

+

a1/2
g(k1 ,k2 ,...,kn) =

∞

∑
k1=0

∞

∑
k2=0

. . .
∞

∑
kn=0

C
qk1+k2+...+kn

= C
(

q
q − 1

)n
<

ε

21/p
,

and, by Theorem 3, there are x ∈ X and x∗ ∈ X∗ such that,

∥x − x0∥ <
ε

21/p
, ∥x∗ − x∗0∥ <

ε

21/p
, (4.1)

and ∣∣∣〈Tk1
1 Tk2

2 ...Tkn
n x, x∗

〉∣∣∣ ≥ C2

q2(k1+k2+...+kn)

∥∥∥Tk1
1 Tk2

2 ...Tkn
n

∥∥∥ , (4.2)

for all (k1, k2, ..., kn) ∈ Zn
+. By (4.1), in both cases, 1 ≤ p < ∞ and p = ∞, we have

∥(x, x∗) − (x0, x∗0)∥p = ∥(x − x0, x∗ − x∗0)∥p < ε,

and, if µ
(i)
1 , ..., µ

(i)
i−1, µ

(i)
i+1, ..., µ

(i)
n ∈ C are as in the proof of Theorem 4, by (4.2) we

have ∣∣∣〈Tk1
1 Tk2

2 . . . Tkn
n x, x∗

〉∣∣∣ ≥ C
|λi|ki

q2ki

 n

∏
j=1
j ̸=i

∣∣∣µ(i)
j

∣∣∣kj

q2ki

 (4.3)

for all (k1, k2, ..., kn) ∈ Zn
+. Since |λi| > q2, from (4.3) we obtain that, for every

1 ≤ i ≤ n, lim
ki→∞

∣∣∣〈Tk1
1 Tk2

2 ...Tkn
n x, x∗

〉∣∣∣ = ∞, for all k j ∈ Z+, j ̸= i. □
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UNIVERSITY "ST. KLIMENT OHRIDSKI"
FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGIES,
STUDENTSKA B.B., BITOLA, NORTH MACEDONIA

Email address: sonja.manchevska@uklo.edu.mk

MARIJA OROVČANEC
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