

PROCEEDINGS OF V. INTERNATIONAL AGRICULTURAL, BIOLOGICAL, LIFE SCIENCE CONFERENCE AGBIOL 2023

18-20 SEPTEMBER 2023

EDIRNE, TURKEY

V. International Agricultural, Biological & Life Science Conference, Edirne, Turkey, 18-20 September 2023

PROCEEDINGS OF V. INTERNATIONAL AGRICULTURAL, BIOLOGICAL, LIFE SCIENCE CONFERENCE AGBIOL 2023

18-20 SEPTEMBER 2023 EDIRNE, TURKEY

Organized by Trakya University

ISBN #: 978-605-73041-6-2

WELCOME NOTES

You are welcome to our V. AGBIOL Conference that is organized by Trakya University. The aim of our conference is to present scientific subjects of a broad interest to the scientific community, by providing an opportunity to present their work as oral or poster presentations that can be of great value for global science arena. Our goal was to bring three communities, namely science, research and private investment together in a friendly environment of Edirne, Turkey in order to share their interests and ideas and to get benefit from the interaction with each other.

In September 2018, we organized the first AGBIOL Conference with more than 700 scientists and researchers from all over the world with over 800 scientific papers. Due to COVID-19 situation, II. AGBIOL 2020 has organized fully on-line event which was one of the biggest online conferences in recent years in the world with 499 papers and 1133 authors with 333 oral and 166 e-poster presentations from 55 countries. Due to COVID-19 situation, AGBIOL 2021 was organized online again. AGBIOL 2022 conference was organized with a worldwide participation from 44 countries over 522 papers contributed by over 1300 authors.

There is a worldwide participation from 33 countries 833 papers contributed by over 2000 authors with 522 oral and 311 poster presentations in AGBIOL 2023.

The AGBIOL 2023 will be normal participation as well as with online participation in Trakya University Balkan Congress Center in Edirne, Turkey on 18-20 September, 2023. The program will include oral talks by invited prominent scientists and oral and e poster presentations by participants in selected topics from the submitted abstracts focusing on Agriculture, Biology and Life Sciences topics.

With care for our nature and environment, we aim the green congress, meaning that as little as possible papers will be used. Abstract book will be published in electronic book and will be distributed to the participants on flash memory stick as well as by e mail for online participants. All the e-posters should be prepared in electronic form and then submit to via the conference e mail and will exhibit in electronical poster boards as well as in online e poster hall in our web page during the conference.

The participants with paid conference fee will be able to access all the normal and virtual presentation talks in each session, as well as to visit the virtual poster hall via preliminary provided participant ID and codes. The selected ABSTRACTs will be published in the Conference ABSTRACT and Proceedings Book. Participants might send us their full papers, which based on their preferences will be published either in our Conference ABSTRACT and Proceedings Book or in selected International Indexed Scientific Journals.

Conference Topics:

Agriculture, Forestry, Life Sciences, Agricultural Engineering, Aquaculture and Biosystems, Animal Science, Biomedical science, Biochemistry and Molecular Biology, Biology, Bioengineering, Biomaterials, Biomechanics, Biophysics, Bioscience, Biotechnology, Botany, Chemistry, Chemical Engineering, Earth Sciences, Environmental Science, Food Science, Genetics and Human Genetics, Medical Science, Machinery, Pharmaceutical Sciences, Physics, Soil Science.

We would like to thank all of you for joining this conference and we would like to give also special thanks to our sponsors and collaborators for giving us a big support to organize this event.

> Prof Dr Yalcin KAYA Head of the Organizing Committee

ORGANIZING COMMITTEE

Prof. Dr. Yalcin KAYA	Trakya University, Turkey	Chair
Assoc Prof. Dr. Necmi BEŞER	Trakya University, Turkey	Co-Chair
Emrah AKPINAR	Trakya University, Turkey	Secretary
Prof. Dr. Viliana VASSILEVA	Inst. of Forage Crops, Pleven, Bulgaria	Member
Prof. Dr. Ioannis TOKATLIDIS	Trakia Democritus University, Greece	Member
Prof Dr Mohamed RAMDANI	University of Mohamed V Agdal, Maroc	Member
Assoc. Prof. Dr. Natiga NABIYEVA	Genetic Resources Inst. of NAS, Azerbaijan	Member
Dr Maria PACUREANU	NARDI Fundulea Institute, Romania	Member
M. İbrahim YILMAZ	Trakya Agricultural Research Institute	Member

INVITED SPEAKERS

ASST PROF DR MARIANA PETKOVA – Plovdiv Agricultural University, Bulgaria

PROF DR ENDER MAKINECI - Istanbul University-Cerrahpasa, Turkey

PROF DR RAPHAEL SANDALTZOPOULOS - Democritus Univ. of Thrace, Greece

PROF DR APOSTOLOS KIRITSAKIS - International Hellenic Univ, Greece

EDITOR OF THE PROCEEDING BOOK

Prof Dr Yalcin KAYA, Assoc Prof Dr Necmi BESER

SCIENTIFIC COMMITTEE

NAME

		COLUTRA
<u>NAME</u> Acad. Prof. Dr. Atanas ATANASSOV	INSTITUTION Joint Genomic Center - Sofia	COUNTRY Bulgaria
Prof Dr Amel MILA	ENSV, Alger	Algeria
Prof. Dr. Miguel CANTAMUTTO	IINTA Hilario Ascasubi Institute,	Argentina
Prof. Dr Zhao JUN	Inner Mongolia Agricultural Un.	China
Prof. Dr. Renata HORN	University of Rostock	Germany
Prof. Dr. Mulpuri SUJATHA	Indian Inst of Oilseeds Res.	India
Prof. Dr Lara HANNA WAKIM	Holy Spirit University	Lebanon
Prof. Dr Semra HASACEBI	Trakya University	Turkey
Prof Dr Velibor SPALEVIC	University of Montenegro	Montenegro
Prof Dr Charles BRENNAN	RMIT University	Australia
Prof. Dr. Saeed RAUF	University of Sargodha	Pakistan
Prof. Dr. h.c. Radu E. SESTRAS	Un of Agric.Vet Med Cluj-Napoca	Romania
Prof. Dr. Dejana PANKOVIC	Educon University	Serbia
Prof Dr Leonardo VELASCO	Inst. for Sustainable Agric. CSIC	Spain
Prof. Dr. Mehmet Emin CALISKAN	Nigde OmerHalisdemir University	Turkey
Prof. Dr. Ahmet ULUDAG	Onsekizmart University	Turkey
Prof. Dr Ahu ALTINKUT UNCUOGLU	Marmara University	Turkey
Prof. Dr. Metin TUNA	Namık Kemal University	Turkey
Prof. Dr. Sezen ARAT	Namık Kemal University	Turkey
Prof. Dr. Coskun GULSER	Ondokuzmayis University	Turkey
Prof. Dr. Metin AYDOĞDU	Trakya University	Turkey
Prof. Dr. Ismail CAKMAK	Sabanci University	Turkey
Prof. Dr. Yaroslav BLUME	National Academy of Sciences	Ukraine
Prof. Dr. Nurhan T. DUNFORD	Oklahoma State University	USA
Prof. Dr. Mahmut TOR	University of Worcester	England
Prof. Dr Ozlem TOKUSOGLU	Celal Bayar University	Turkey
Prof. Dr Mustafa TAN	Trakya University	Turkey
Assoc Prof. Dr. Gökhan KAÇAR	Trakya University	Turkey
Assoc Prof. Dr. Süleyman KÖK	Trakya University	Turkey
Assoc. Prof. Dr Zizis VRYZAS	Democritus University of Thrace	Greece
Assoc. Prof Dr Ina ZIVATKAUSKIENE	University of Applied Sciences	Lithuania
Assoc. Prof. Dr. Nooduan MUANGSAN	Suranaree Univ. of Technology	Thailand
Asst. Prof. Dr. Sarra JRIBI	University of Carthage	Tunusia
Asst. Prof. Dr. Buket AŞKIN	Kırklareli University	Turkey
Asst. Prof. Dr. Hayati ARDA	Trakya University	Turkey
Asst. Prof. Dr. Güzin TUNCA ALPASLAN	NTrakya University	Turkey
Asst. Prof. Dr. Nihan Bilge KAMER	Trakya University	Turkey
Asst. Prof. Dr. Mehmet YABAŞ	Malatya Turgut Özal University	Turkey
Dr Veli PEKCAN	Trakya Agric. Research Institute	Turkey

COMPARATIVE METHODS FOR DETECTION OF SUBCLINICAL MASTITIS AT DAIRY COWS IN ORDER TO IMPROVE MILK QUALITY

Biljana TRAJKOVSKA¹, Blagoja RISTESKI¹, Vesna KARAPETKOVSKA-HRISTOVA¹

¹ University st. Kliment Ohridski, Faculty of Biotechnical Sciences, Bitola, North Macedonia Corresponding author e-mail: biljana.trajkovska@uklo.edu.mk

ABSTRACT

The control of the health status of the udder is a significant element for obtaining a hygienically and safety milk. The aim of our research was to make a comparative analysis of the methods for determining subclinical mastitis, such as CMT and somatic cell count (SCC/mL) in comparison with electrical conductivity (EC) and lactose as an indirect method for detection of subclinical mastitis. It was determined that by increasing the number of somatic cells in milk (SCC/mL), the percentage of lactose in milk decreases from 4.80% to 4.13%, and the electrical conductivity increases from 4.21 mS/cm to 4.95 mS/cm. The number of somatic cells obtained using the MKC EN ISO 13366-2:2010 method was taken as a standard method for determining the somatic cells in milk, and based on these results, the sensitivity of the other methods was further determined. The results indicate that the California mastitis test (CMT) has 57% sensitivity and 88% specificity, while measuring the electrical conductivity (EC) has a sensitivity of 82% and a specificity of 50%. Whereas the sensitivity of the lactose is 79%, and the specificity is 60%. The sensitivity of the test, the so-called true positive rate, or probability of detection, expresses the percentage of correctly identified infected quarters. According to this with determination of EC and the percentage of lactose, more reliable results are obtained compared to the CMT test. On the other hand the specificity of the test, the ability to detect all negative samples, i.e. healthy cows, better results were obtained with the CMT test.

Keywords: mastitis, California mastitis test (CMT), electrical conductivity (EC), lactose.

INTRODUCTION

Mastitis is still one of the most significant problems in the dairy industry and one of the most expensive diseases affecting dairy cows. The losses that occur are the result of milk reduction, veterinary costs, deterioration of milk quality, and increase in the risk of subsequent mastitis (Lightner, J.K., et al., 1988). These losses are mostly caused by subclinical mastitis, while clinical mastitis can easily be determinate by the farmer (Kaşikçi, G., et al., 2012).

Diagnosing subclinical mastitis can be problematic because the milk still looks normal, but the number of somatic cells is increased (Forsback et al., 2010). These changes can be determined indirectly using several diagnostic methods such as California mastitis test (CMT), pH, chlorides, catalase test, modified White Side test (MWT) (Reddy, B. S. S., et al., 2014) as well as electrical conductivity. These tests are preferred to be used as screening tests for subclinical mastitis and can be easily used and satisfactory and repeatable results can be obtained (Leslie et al., 2002). The diagnosis of mastitis according to the International Dairy Federation (IDF) should be made based on the number of somatic cells (SCC) and the microbiological status of the quarter, i.e. bacteriological cultures of milk samples are the standard method for determining mastitis, which is financially more expensive and therefore not widely used.

For these reasons, the goal was to determine the compliance of several methods with standard protocols for diagnosing subclinical mastitis as somatic cell count. Because, in recent times, the awareness of consumers who expect quality and safety products obtained from healthy animals is increasing more and more. Precisely because of this, it is necessary to control the quality of milk on the farm itself in order to meet the demands of consumers.

MATERIAL AND METHOD

The milk samples (N=69) were taken from a farm in the Pelagonian region, with a tied cow housing system. First, the milk was milked on a black pad in order to determine if there was clinical mastitis or inflammation of the teat canal, then the milk was milked on California mastitis test (CMT) plates in order to determine if there was subclinical mastitis. Two milk samples per quarter were taken, for determination of somatic cell count (SCC/mL) and for determination of conductivity and physicochemical parameters of the milk. The samples taken were transported to the laboratory at a temperature of 5-8°C in a hand-held refrigerator, and the tests were performed within 24 hours.

The obtained results were grouped into four categories depending on the number of somatic cells. At the same time, the first category referred to normal milk, where the number of somatic cells was $\leq 200,000$ cells/ml, while the second, third and fourth categories referred to the number of somatic cells from 200,001 to 400,000 cells/ml; 400,001 to 600,000 cells/ml; and $\geq 601,000$ cells/ml, respectively.

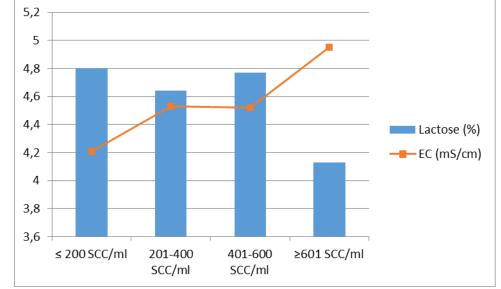
California mastitis test (CMT). The test is based on the action of surfactants (alkylaryl sulfonate) on DNA polymer from leukocytes, during which DNA is separated, and the protein part spontaneously turns into a gel. Interpretation of the results was done as previously described by Galfi A., (2016).

The electrical conductivity (EC) was examined using a HANNA HI 98192 EC/TDS/NaCl/Resistivity conductometer, which has a measurement range of 0-400 mS/cm. The samples were analyzed after milking. During the measurement, the temperature of the samples was 20-25 °C. About 50 ml of milk was taken for analysis.

The number of somatic cells was determined using a fluoro-opto-electronic method, BENTLEY SOMACOUNT CC 150, according to standard MKC EN ISO 13366-2:2010: Milk - Somatic cell counting - Part 2: Instructions for use with fluoro-opto- electronic counter ISO 13366-2:2006. Samples intended for determining the number of somatic cells were previously preserved with bronopol and heated to a temperature of 40 °C in a water bath before analysis in the apparatus.

Physicochemical parameters in milk (fat, protein, lactose, dry matter (SNF), density, casein, pH) were analyzed using LactoScope FTIR Advanced.

The examination of the sensitivity and specificity of indirect tests was done as previously described by Sharma et al., (2010).


Statistical significance between the studied categories was analyzed at a significance level of 5% (p<0.05) and 1% (p<0.01) using the Student's t-test. The data are presented in tables and graphs. The results were processed using Microsoft Office Excel and SPSS 20 statistical software.

RESULTS AND DISCUSSION

Monitoring the health status of dairy cows is necessary in order to obtain quality and hygienic milk (Boboš et al., 2012). The somatic cells of the milk are an indicator of the health status of the udder as well as the hygienic quality of the milk. A large number of factors which interact with each other affect the number of somatic cells in milk, such as the lactation period,

the number of lactations, i.e. the age of the animals, milk yield, improper milking, stress, chronic diseases as well as mechanical injury to the udder tissue (Laevens et al., 1997; Pyörälä, 2003; Boboš and Vidić, 2005).

The increased number of somatic cells is usually accompanied by changes in the physicochemical composition in raw milk. The results shown in table 1 refer to the changes that occur in the milk composition, as a result of the increased number of somatic cells. Additionally, electrical conductivity in milk gradually increases with the increase in the number of somatic cells (Graph 1).

Graph 1 Changes in EC and lactose depending on the categories according to the number of somatic cells

Significant differences were determined only between the group where the number of somatic cells was over 600,000 cells/ml compared to the rest of the groups (p<0.05) (table 1). In addition, although we have an increase in milk conductivity when the number of somatic cells is above 200,000 cells/ml (4.53 mS/cm (201-400 x 10^3 SCC/ml) and 4.52 mS/cm (401-600 x 10^3 SCC/ml), however, no significant differences were observed, which we believe is due to the small number of samples in these two groups (N=8 and N=9, respectively). Additionally EC can have significant variations even in the absence of mastitis which can be due to a number of factors such as stage of lactation, age of cows, milking intervals as well as cow condition (Biggadike et al. 2000). Factors such as milk temperature, pH, and milk fat percentage can have an effect on EC measurement (Qayyum et al. 2016).

the number of somatic cells (N=69)								
Categories according to	Milk parameters $\bar{x} \pm SD$							
the number of somatic cell count SCC/ml (N=69)	SCC/ml x 10 ³	Fat (%)	Proteins (%)	Lactose (%)	SNF (%)	pH (%)	Casein (%)	EC (mS/cm)
≤200 x 10 ³ (N=25)	77,92 ± 56,34	2,06 ± 1,78	3,32 ± 0,24	$4,80 \pm 0,19$	$\begin{array}{c}9,07\pm\\0,25\end{array}$	6,74 ± 0,06	2,79 ± 0,20	$4,21 \pm 0,68$ °
201-400 x 10 ³ (N=8)	322,83 ± 231,00	$2,23 \pm 0,54$	$\begin{array}{c} 3,\!48\pm\\0,\!49\end{array}$	4,64 ± 0,31 a	9,04 ± 0,52	$6,77 \pm 0,07$	$\begin{array}{c} 2,92 \hspace{0.1cm} \pm \\ \hspace{0.1cm} 0,38 \end{array}$	$4,53 \pm 2,42$ ª
401-600 x 10 ³ (N=9)	466,03 ± 45,46	2,51 ± 0,69	3,65 ± 0,25	$4,77 \pm 0,20$	8,87± 0,31	6,73 ± 0,10	3,13 ± 0,20	$4,52 \pm 0,64$ a
≥601 x 10 ³ (N=27)	1.415,65± 726,00	2,21 ± 0,64	3,64 ± 0,34	4,13 ± 0,57 ^b	8,61 ± 0,68	6,87 ± 0,11	3,04 ± 0,25	4,95 ± 1,15

 Table 1 Changes in the physicochemical composition of milk by category according to the number of somatic cells (N=69)

* Differences in values with different superscripts in the same column are statistically significant at the level: a:b p<0.05

The CMT test is accepted as a quick, simple and reliable method for identifying cows with altered secretion and subclinical mastitis. At the same time, based on the results of CMT, the number of somatic cells can be indirectly determined in individual milk samples (Galfi A., 2016). Table 2 shows the results obtained using CMT, where the number of somatic cells is taken as a standard. 4% of the examined samples are false positives, while false negatives are 28%. In comparison with the studies of Galfi A., (2016), that value is 13.33% for false positive in the period before the drying of the cows, where bacteriological tests are taken as a standard. Sharma et al., (2010) states that the false positive reaction of CMT is 23.79%, while the false negative is 25.72%. Additionally, according to Varatanović et al., (2010), CMT test was positive at 11 samples, which were determinate previously as bacteriologically negative, on the other hand CMT give a negative reaction in 10 samples, previously determinate as bacteriologically positive.

The sensitivity of CMT in our research was 57%, and in the research of Galfi A., (2016) in dry cows the sensitivity of the test is 75%, while in the early lactation period the sensitivity is 87.5%. Sharma et al., (2010) found a higher sensitivity of the test (86.07%), while Langer et al., (2014) found a lower sensitivity of 60.1% compared to our research. The specificity of the test is 88% in our research, while in the research of Galfi A., (2016) that specificity of the test in the period before the drying of the cows is 86.67%, and in the period of early lactation it is 87.5%. According to the research of Dingwell et al., (2004) the sensitivity of CMT four days after parturition is 82.4%, and the specificity is 80.6%, which indicates that this method can be applied with success in determining udder secretion disorders and subclinical mastitis during the early lactation period. The validity of the test according to the results of Langer et al., (2014) is 61.56%, Reddy et al., (2014) 73.33%, while according to the results of Sharma et al., (2010) the validity of the CMT is 75.52%.

Stanuaru				
Test	СМТ			
	Ν	%		
ТР	25	36		
FP	3	4		
TN	22	32		
FN	19	28		
Total number of analyzed samples	69			
Sensitivity (%)	57			
Specificity (%)	88			
Validity (%)	68			
PPV (%)	89			
NPV (%)	54			

Table 2. Results obtained with the California mastitis test (CMT) and using SCC/ml as a standard

TP - true positive, FR - false positive, TN - true negative, FN - false negative, PPV - positive

predictive value, NPV - negative predictive value

The sensitivity of the test with EC in our research is 82% (table 3). Similar results were obtained by Mansell and Seguya (2003) where they observed a sensitivity of 51%, while Langer et al., (2014) determined significantly low values of sensitivity compared to other authors and it was 12.5%. Galfi A., (2016) states that the sensitivity of the test in the drying period is 74.32%, while during early lactation it was significantly low at 2.86%, and for the specificity of the test, it is 50%. According to research by Mansell and Seguya (2003), the specificity of the test was 71%, while Nielen et al., (1992) observed a high specificity of 94%. In addition, Langer et al., (2014) considers that the possibility of determining the subclinical form of mastitis measured by the Draminski mastitis detector is relatively low 7.6%. While the validity in our research is 55%. According to the obtained results of Galfi A., (2016) when measuring the electrical conductivity with the Draminsky test, it was determined that the validity of the test in the drying period is 52%, while in the early lactation period it is 48.65%. While Langer et al., (2014) determined validity with the Draminski test of 59.05%.

From the results (table 3), it can be noted that the percentage of false positives is high (38%). The validity of manual instruments for measuring electrical conductivity has been investigated by many authors. Musser et al., (1998) indicated that 71% of test positive samples were bacteriologically negative and minor mastitis pathogens were isolated in 11% of negative milk samples. According to Galfi A., (2016) the stage of lactation, type of pathogenic microorganism's plays a significant influence on EC values. Additionally, Seguya and Mansell (2000) observed the lowest electrical conductivity in milk samples infected with major mastitis pathogens. Additionally, during mastitis the electrical conductivity is not always increased (Norberg et al., 2004). Also, Woolford et al., (1998) stated that the difficulties in the interpretation of electrical conductivity measurement results arising from large variations in EC values in uninfected udder quarters between cows, between udder quarters of same cow, as well as between different milking periods in the same udder guarters. Large deviations in the electrical conductivity of milk during the drying period and early lactation are thought to be the result of a physiological increase in chloride concentration in milk (Linzell and Peaker, 1975). Langer et al., (2014) explained that the reduced electrical conductivity of milk in infected udder quarters occurs as a result of increased capillary permeability during intramammary infection and the transport of sodium, potassium and chlorine ions into the alveolar lumen resulting in to increase their concentration in milk.

IDF experts Hamann J., and Zecconi A., (1998) published a meta-analysis on electrical conductivity (EC) in which they concluded that EC does not provide satisfactory results for the detection of subclinical and clinical mastitis. According to their research the ability of EC to predict clinical mastitis can be considered in two ways. Moreover, if the clinical signs of the animal are taken as a criterion for diagnosis, in that case the sensitivity is 68%, specificity 82%, PPV 58%, NPV 82%. While if the number of somatic cells is taken as a criterion, the sensitivity remains at the same level of 68%, the specificity increases to 88%, the percentage of PPV and NPV is 72% and 85%, respectively. In subclinical mastitis, when intra mammary infection is taken as a criterion, sensitivity is 61%, specificity 66%, PPV 55% and NPV 70%.

The state	EC		
Test	Ν	%	
ТР	19	33	
FP	22	38	
TN	13	22	
FN	4	7	
tal number of analyzed samples	58		
Sensitivity (%)	82		
Specificity (%)	50		
Validity (%)	55		
PPV (%)	46		
NPV (%)	76		

Table 3. Results obtained by measuring electrical conductivity (EC) and using SCC/ml as a standard

TP - true positive, FR - false positive, TN - true negative, FN - false negative, PPV - positive predictive value, NPV - negative predictive value

As a result of tissue damage during the occurrence of mastitis and the reduction of the synthetic ability of the enzyme system of the secretory cells, there is also a reduction in the biosynthesis of lactose (Pyörälä, S. 2003). According to Pyörälä, S. (2003), lactose can be used as an indicator of mastitis, as it decreases during inflammation. According to the results obtained in our research, the sensitivity is 79%, while the specificity is 60% (table 4). The ability of lactose to determine intramammary infection according to the predicted limits of 4.7% whose value applies when the number of somatic cells is up to 100,000 cells/ml is 60.8% for sensitivity, and 80.6% for specificity (Pyörälä, S. 2003).

Test	Lactose		
	Ν	%	
ТР	19	30	
FP	16	25	
TN	24	37	
FN	5	8	
Total number of analyzed samples	64		
Sensitivity (%)	79		
Specificity (%)	60		
Validity (%)	67		
PPV (%)	54		
NPV (%)	83		

Table 4 Results obtained by measuring lactose and using SCC/ml as standard

TP - true positive, FR - false positive, TN - true negative, FN - false negative, PPV - positive predictive value, NPV - negative predictive value

CONCLUSIONS

Based on our research there is a positive correlation between somatic cells count and electrical conductivity. The highest values were observed in the fourth defined category according to the number of somatic cells (≥600,000 cells/ml) of 4.95 (mS/cm), compared to the normal milk group ($\leq 200,000$ cells/ml) 4.21 (mS/ cm). Additionally, with the increase in the number of somatic cells in the milk, there is also a decrease in the percentage of lactose. The lowest values were observed in the fourth defined category according to the number of somatic cells $(\geq 600,000 \text{ cells/ml})$ of 4.13%, compared to the normal milk group ($\leq 200,000 \text{ cells/ml})$ 4.80%. The best results in terms of the sensitivity of the test were obtained with EC (82%), then with lactose (79%) and finally with CMT (57%), from the total number of analyzed samples. The best results in terms of specificity were obtained using CMT (88%), lactose (60%) and EC (50%), from the total number of analyzed samples. Sensitivity of the test represents the ability of the test to detect all positive, infected individuals, the application of EC and the percentage of lactose gives more reliable results, compared to the CMT test. In terms of the specificity of the test, where its ability to detect all negative, i.e. healthy cows, better results were obtained with the CMT test, which is just another proof that the person performing the test needs training for correct interpretation of the obtained results

REFERENCES

- Biggadike H, Ohnstad I, Hillerton E. 2000. A practical evaluation of milk conductivity measurements. Proceeding of British Mastitis Conference Shepton Mallet, Institute for Animal Health/Milk Development Council. p. 56-61.
- Boboš S., Vidić B. 2005. Mlečna tlezda pretivara. Morfologija patologija terapija. Novi Sad.
- Dingwell R., Leslie K., Timms L. L, Schukken Y., Sargent J. 2004. Evaluation of the California mastitis test to determine udder health status of early lactation dairy cows. Animal Industry Report. AS 650, ASL R1913.. http://lib.dr.iastate.edu/ans_air/vol650/iss1/72

- Galfi A., 2016. Klinički i ultrazvučni pregled vimena krava nakon primene laktoferina u periodu involucije. Doktorska disertacija. Univerzitet U Novom Sadu Poljoprivredni Fakultet Departman Za Veterinarsku Medicinu, Novi Sad
- Hamann J., Zecconi A., 1998. Evaluation of the electrical conductivity of milk as a mastitis indicator, in: IDF bulletin 334, International Dairy Federation, Brussels, Belgium.
- KAŞIKÇI, G., ÇEtİn, Ö., BİNGÖL, E. B., & GÜndÜz, M. C. 2012. Relations between electrical conductivity, somatic cell count, California mastitis test and some quality parameters in the diagnosis of subclinical mastitis in dairy cows. Turkish Journal of Veterinary and Animal Sciences, 36(1), 49-55.
- Laevens H., Deluyker H., Schukken Y. H., De Meulemeester L., Vandermeersch R., De Mue Lenaere E., De Kruif A. 1997. Influence of parity and stage of lactation on the somatic cell count in bacteriologically negative dairy cows. J. of Dairy Sci. 80(12): 3219-26.
- Langer A., Sharma S., Sharma N. K., Nauriyal D. S. 2014. Comparative efficacy of different mastitis markers for diagnosis of subclinical mastitis in cows. International Journal of Applied Science and Biotechnology. 2(2): 121-5.
- Leslie, K. E., Jansen, J. T., & Lim, G. H. 2002. Opportunities and implications for improved on-farm cowside diagnostics. In Proc. De Laval Hygiene Symp (Vol. 147).
- Lightner, J. K., Miller, G. Y., Hueston, W. D., & Dorn, C. R. 1988. Estimation of the costs of mastitis, using National Animal Health Monitoring System and milk somatic cell count data. Journal of the American Veterinary Medical Association, 192(10), 1410-1413.
- Mansell P.D., Seguya A. 2003. The use of a hand-held conductivity meter for the diagnosis of subclinical mastitis in dairy cows during late lactation. New Zealand Vet. J. 51(1): 21-5.
- Musser J. M. B., Anderson K. L., Caballero M., Amaya D., Maroto-Puga J. 1998. Evaluation of a hand-held electrical conductivity meter for detection of subclinical mastitis in cattle. American Journal of Veterinary Research. 59(9): 1087-91.
- Nielen M., Deluyker H., Schukken Y., Brand A. 1992. Eletrical conductivity of milk: measurement, modifiers, and meta-analysis of mastitis detection performance. Journal of Dairy Science. 75(2): 606-14.
- Norberg E., Hogeveen H., Korsgaard I. R., Friggens N. C., Sloth K. H. M. N., Løvendahl P.2004. Electrical conductivity of milk: Ability to predict mastitis status. Journal of Dairy Science. 87(4): 1099-107.
- Pyörälä S. 2003. Indicators of inflammation in the diagnosis of mastitis. Veterinary Research. 34(5): 565-78.
- Qayyum A, Ali-Khan J, Hussain R, Avais M, Ahmad N, Sarwar-Khan M. 2016. Investigation of milk and blood serum biochemical profile as an indicator of sub-clinical mastitis in Cholistani cattle. Pak Vet J. 36:275-279.
- Reddy, B. S. S., Kumari, K. N., Reddy, Y. R., Reddy, M. V. B., & Reddy, B. S. 2014. Comparison of different diagnostic tests in subclinical mastitis in dairy cattle. International Journal of Veterinary Science, 3(4), 224-228.
- Sharma N., Pandey V., Sudan N. A. 2010. Comparison of some indirect screening tests for detection of subclinical mastitis in dairy cows. Bulgarian Journal of Veterinary Medicine. 13(2): 98-103.
- Varatanović N., Podţo M., Mutevelić T., Podţo K., Čengić B., Hodţić A., Hodţić E. 2010. Use of Californija mastitis test, somatic cells count and bacteriological findings in diagnostics of subclinical mastitis. Biotechnology of Animal Husbandry. 26(1-2): 65-74.
- Woolford M. W., Williamson J. H., Henderson H. V.1998. Changes in electrical conductivity and somatic cell count between milk fractions from quarters subclinically infected with particular mastitis pathogens. Journal of Dairy Research. 65(2): 187-98.