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N-TUPLE WEAK ORBITS TENDING TO INFINITY FOR HILBERT 

SPACE OPERATORS 
 

Sonja Mančevska, Marija Orovčanec   
 
 
Abstract . In this paper we prove some results on the existence of a dense set of 
pairs in the direct product of an infinite-dimensional complex Hilbert space 
with itself such that each pair in this set has an n-tuple weak orbit tending to 
infinity for a specific countable family of mutually commuting bounded linear 
operators. 

 
1. INTRODUCTION 

 
For bounded linear operators on Banach spaces the concepts of n-tuple orbits 

and n-tuple weak orbits are defined as follows. If X  is a complex and infinite-
dimensional Banach space, ( )B X  is the algebra of all bounded linear operators 

on X  and 1 2, , , ( )nT T T B X   are mutually commuting operators, then the n-
tuple orbit of the vector x X  is the set 

 1 2
1 1 2Orb({ } , ) : 0;1nk k kn

i i n iT x T T T x k i n      . (1.1) 

The n-tuple orbit tends to infinity if 

1 2
1 2lim n

i

k k k
n

k
T T T x


  , for all 0jk  , j i , 1 ,i j n  . 

For 1n   , the n-tuple orbit (1.1) reduces to a simple sequence of form 

 Orb( , ) : 0,1,2,nT x T x n   , 

usually referred as single orbit (or simply orbit) of the vector x X  under the 

operator T . If *X  is the dual space of X , i.e., the space of all bounded linear 

functionals * :x X  , and for x X  and * *x X , , : ( )x x x x  , the n-

tuple weak orbit of the pair )( , x Xx X    is a set of form 

 1 2
1 1 2Orb({ } , , ) , : 0;1 .nk k kn

i i n iT x x T T T x x k i n 
       (1.2) 

The n-tuple weak orbit tends to infinity if 
__________________________________________________ 
2010 Mathematics Subject Classification. Primary: 47A05. Secondary: 47A11, 
47A25.  
Key words and phrases. Hilbert spaces, weak orbits, n-tuple weak orbits, 
sequences of operators. 
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1 2
1 2lim ,n

i

k k k
n

k
T T T x x


  , for all 0jk  , j i , 1 ,i j n  . 

For 1n   , the n-tuple weak orbit (1.2) reduces to a simple scalar sequence of 
form 

 Orb( , , ) , : 0,1,2,nT x x T x x n    , 

usually referred as weak orbit of the pair * *)( ,x x X X   under the operator T . 
For the case of Hilbert spaces, by the Riesz Theorem for representation of a 

bounded linear functional on Hilbert spaces (cf. [7,III.6]), given an infinite-
dimensional complex Hilbert space H  with an inner product   , its dual space 

*H  can be fully identified with the space itself since 

 * , :H yx x y x H H   . 

Hence, for a set of mutually commuting operators 1 2, , , ( )nT T T B H   the n-
tuple weak orbits will be the sets of form 

 1 2
1 1 2Orb({ } , , ) : 0;1nk k kn

i i n iT x y T T T x y k i n      , ( , )x y H H  . 

In this paper we will consider only the conditions under which the direct 
product H H  contains a dense of pairs ( , )x y  with n-tuple weak orbits 
tending to infinity that do not involve any requirements upon specific subsets of 
the spectra of the operators. For H H  we will assume that is endowed with 
the product topology. Given an operator ( )T B H , ( )T  and ( )r T  will denote 
the spectrum and the spectral radius of the operator T , respectively. 
 
2. PRELIMINARY RESULTS 
 
Theorem 2.1. ([6, Theorem V.39.8]) Let H  and K  be Hilbert spaces, 1( )n nT   

be a sequence of operators in ( , )B H K  and 1( )n na   be sequence of positive 

numbers with 1 nn a   . Then 

(i) there are x H  and y K  such that and n n nT x y a T , for all n ; 

(ii)  there is a dense subset of pairs ( , )x y H K   such that n n nT x y a T , 

for all n  sufficiently large. 
 
Corollary 2.2. ([6, Corollary V.39.9]) Let H be Hilbert space and ( )T B H  is 

such that 
1

1
k

k T


   . Then there exist ,x y H  such that nT x y  . 

Moreover, the set of such pairs ( , )x y  is dense in H H . 
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Lemma 2.3. ([6, Lemma V.37.15]) Let 0   and 1( )n na   be a sequence of 

positive numbers satisfying 1 nn a   . Then there is a sequence of positive 

numbers 1( )n nb   such that nb   as n   and 1 n nn a b   . 

 
3. MAIN RESULTS 

 
Let }{1,2 ,, NF    for some N  , 2N  , or F   . 

Theorem 3.1. Let H  be a Hilbert space, { : ( )}iT i F B H   and 

, 1{( ) : }i j j Fa i   be a family of sequences of positive numbers such that 

, 1 ,i ji F j a    . Then for any open balls 1B  and 2B  in H  there are vectors 

1x B , 2y B  and 0k   such that 

,
kk

i i k iaT y Tx  , for all i F  and 0k k . 

Proof. Let , : k
i k iT T  ( i F ,  k ), :f F     be the bijective mapping 

defined with 
( 1), if  {1,2, }

( , ) ( 2)( 1)
, if 

2

,

 

i N j F
f i j i j i j

j F

N  
   

 


 




, 

and let :g F    denote its inverse mapping. If 1( )n na   is a sequence of 

positive numbers and 1( )n nT   is a sequence of operators defined with 

( )n g na a   and ( )n g nT T  , for all n , 

then 1 , ,1 i jn i jn Fa a       . Hence (by Theorem 2.1. (ii), applied on 

1( )n na  , 1( )n nT   and H K ), if 1B  and 2B  are open balls H , then there are 

1x B , 2y B  and 0n   such that 

n n nT x y a T   , for all 0n n . (3.1) 

Since :f F     is bijective, there is a unique pair 0 0( , )ji F   such that 

0 0 0 )( ,f in j . Let 

0
0

0 0

, if  {1,2, }

, if  

1 ,

 

j F
k

Fji

N
  

 
 

. 

If ( , )i k F   is such that 0k k , then by the definition of :f F     we 

have: 

1. for }{1,2 ,, NF   , 
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0 0 0

0 0 0 ,

( , ) ( 1) ( 1) ( 1)

( 1)

i k if N k N k Nj N N j

i N j n

        

   
 

2. for F   , 

0 0 0 0
0 0.

( 2)( 1)( 2)( 1)
( , )

2 2

i j
f

i ji k i k
i k j nk

      
     

Hence, by (3.1) and the definition of 1( )n na   and 1( )n nT   we obtain 

, ( ) ( ) ,( )
k

i i k g n g n g n
k

i k iT y a ax y T x y T x T T   , 

for all i F  and 0k k .  
 
Theorem 3.2. If H  is Hilbert space and { : ( )}iT i F B H   is a family of 

operators such that 
1

1


   k

ik T , for all i F , then there is a dense set 

D H H   such that the weak orbit  
0

k
i k

T x y


 tends to infinity for every 

pair ( ),x y D  and every i F . If, in addition, { }:iT i F  is a family of 

mutually commuting operators such that the sequence 1( )k k
i j kT T   is norm 

bounded for all ,i j F , then for every n F  and  1 nm  , the m  tuple 
weak orbit 

 1 2

1 2
: 0;1m

m

kk k
ii i iT T T x y k i m    , 

tends to infinity for all 1 21 mi i i n    . 

Proof. Let 1B  and 2B  be open balls H . For i F , let 0i   be such that 

1
1

1 1

2
i ik

k iT







 
  

 
 , 

and (by Lemma 2.3) let , 1( )i k kb   be the sequence of positive numbers such that 

,i kb   as k   and 

,
1

1

1

2

i i k
ik

k i

b

T






 . (3.2) 

If 
1

,,


 k
i ii i kka b T , ( , )i k F  , then by (3.2) we have 

1
,

, 1
1

,
1 1

22

i i k
i ki k ik

i k i Fi
F

F

b
a

T



 



 

      . 

Hence, by Theorem 3.1, there are 1x B , 2y B and 0k   such that 
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1
,, ,

k k
i i k i i k

k k
i k i i i iT x y b Ta T T b   , for all i F  and 0k k . 

Letting k  , we have 

lim k
i

k
T x y


  , for all i F . (3.3) 

 If, in addition, { }:iT i F  is a family of mutually commuting operators such 

that the sequence 1( )k k
i j kT T   is norm bounded for all ,i j F , let , 0i jM   is 

such that ,
k k

i j i jT T M  , for all 0k  , and let )( , yx H H   be a pair 

satisfying (3.3). We continue by induction. 
Let 2m   and 1 21 i i n   . By the Cauchy-Bunyakovsky-Schwarz 

inequality we have 

1 2 1 2 1 2 1 2

1 1 1 2 1 2

1 2 2 1 2

1 1 2 1 2

1 2 2 1 2

1 1 2 1 2

1 2 2 1 2

1 1

22

2 1 2

1 1 2
1 1 1

,

( )

( )

.

k k k k k k k k
i i i i i i

k k k k k
i i i i i

k k k k k
i i i i i

k k k k k
i i i i i

k k k
i i i i i

T x y T x T T x y T T x y

T T T x y T T x y

T T T x T T x y

T T T x T T x y

T M x y T T x y

y

y

   

  

   

     

    

 

Since 
1

n
iT x y   as n   (hence  1 2

1

k k
iT x y   as 2k  , for all 

1 0k  ), the above inequalities imply that 

1 2

1 2

k k
i iT T x y  , as 2k  , for all 1 0k  . 

Similarly,  

1 2 1 2 1 2 1 2

1 2 12 2

2 1 1

2 2 1

2
1

2

1 2

1 2

1 2

122 2
,

( )

,

k k k k k k k k
i i i i i i

k k k k k
i i i i i

k k k
i i i i i

T x y T x T T x y T T x y

T T T x y T T x y

T M x T T xy y

   

  

    

 

which implies that 

1 2

1 2

k k
i iT T x y  , as 1k  , for all 2 0k  . 

To complete the proof, it is enough to show the claim is true for m n , under 
the assumption that the (n-1)-tuple weak orbit 
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 11 2

1 2 1
: 0;1 1n

n

kk k
ji i iT T T x y k j n


     , 

tends to infinity for all 1 11 ni i n   . For a fixed {1,2, , }i n  , arbitrary 

{1,2, , } \{ }j n i   and fixed 1 2, , , 0nk k k   we have 

1 11

1 11 1 2 1 2

1 11 1 2

1 11 1

1 1 1

1 1 1 1 2 1 2

1 1 1 1 2

1 1 1 1 2

( )

( )

i i i n

i i i n n n

i i i in n

i i i in

k k kk k
nji i

k k kk k k k kk k k
n n nji i

k k k kk k kk k
n nj ii i

k k k kk kk
n j ii i

T T T T T x y

T T T T T x T T T x y T T T x y

T T T T T T x y T T T x y

T T T T T T x Ty T

 

 

 

 

 

 

 

 

 

      

     

      2

1 2
, 1 2

1
.

n

l n

k k
n

n k k k k
l i j n

l
l i

T x y

T yM x T T T x y





 
      
  
 



 

Since {1,2, , } \{ }j n i  , by the inductive assumption, we have 

1 11
1 1 1

i i i nk k kk k
nji iT T T T T x y 

     as ik  , for all 0jk  , j i . 

This, together with the above inequalities implies that 

1 2
1 2

nk k k
nT T T x y   as ik  ,  for all 0jk  , j i , 

which completes the proof.  
 
Corollary 3.3. If H  is a Hilbert space and { : ( )}iT i F B H   is a family of 

operators such that )( 1ir T  , for all i F , then there is a dense set D H H   

such that the weak orbit   
0

k
i k

T x y


 tends to infinity for every pair 

( ),x y D  and every i F . If, in addition, { }:iT i F  is a family of mutually 

commuting operators such that the sequence 1( )k k
i j kT T   is norm bounded for 

all ,i j F , then for every n F , every 1 nm   the m  tuple weak orbit 

 1 2

1 2
: 0;1m

m

kk k
ii i iT T T x y k i m    , 

 tends to infinity for all 1 21 mi i i n    . 

Proof. If ( )T B H  has a spectral radius )( 1r T  , then 
1

1


   k

k T .  

Namely, if )( 1r T  , then there is ( )T   such that 1  . By the Spectral 

Mapping Theorem, ( )n nT   for every n . Hence ( )n n nr T T    
and  
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1 1

1 1
nn

n nT 

 

 
    . 

Now the conclusion follows from Theorem 3.2.  
 
 
4. REMARKS ON N-TUPLE ORBITS TENDING TO INFINITY 

 
By the Cauchy-Bunyakovsky-Schwarz inequality we have 

1 2 1 2
1 2 1 2

n nk k k kk k
n nT T T x y T T T x y    , 

for all )( ,x y H H  , 0jk   and 1 j n  . These inequalities clearly imply 

that the n-tuple orbit 1Orb({ } , )n
i iT x  tends to infinity whenever there is y H  

such that the n-tuple weak orbit  1 2
1 2 : 0;1nk k k

n iT T T x y k i n     tends to 

infinity. Hence, from the results in the previous section we can derive the 
following results for n-tuple orbits tending to infinity. 
 
Theorem 4.1. If H  is Hilbert space and { : ( )}iT i F B H   is a family of 

operators such that 
1

1


   k

ik T   for all i F , then there is a dense set 

D H  such that the orbit Orb( , )iT x  tends to infinity for every x D  and 

every i F . If, in addition, { }:iT i F  is a family of mutually commuting 

operators such that the sequence 1( )k k
i j kT T   is norm bounded for all ,i j F , 

then for every n F , every 1 nm  , the m  tuple orbit 1Orb({ } , )
ji j

mT x  

tends to infinity for all 1 21 mi i i n    . 
 
Corollary 4.2. If H  is Hilbert space and { : ( )}iT i F B H   is a family of 

operators such that )( 1ir T   for all i F , then there is a dense set D H  

such that the orbit Orb( , )iT x  tends to infinity or every x D  and every i F . 

If, in addition, { }:iT i F  is a family of mutually commuting operators such that 

the sequence 1( )k k
i j kT T   is norm bounded for all ,i j F , then for every 

n F , every 1 nm  , the m  tuple orbit 1Orb({ } , )
ji j

mT x  tends to infinity for 

all 1 21 mi i i n    . 

 
COMPETING INTERESTS 
 



N-TUPLE WEAK ORBITS TENDING TO INFINITY FOR HILBERT SPACE 
OPERATORS                                                                                                                    
34 

 

34 
 

Authors have declared that no competing interests exist.  
 
References  

 
[1] S. Mančevska, M. Orovčanec, Few results on weak orbits under sequences 
of operators, Proceedings of the Fourth International Scientific Conference – 
FMNS2011, Vol.2, (2011) p.33-40. 

[2] S. Mančevska, M. Orovčanec, N-Tuple Orbits tending to infinity, E-
Proceedings of the First Congress of Differential Equations, Mathematical 
Analysis and Applications CODEMA 2020, 24–31. 

[3] S. Mančevska, N-Tuple Orbits tending to infinity for Hilbert space 
operators, Mat. Bilten 45. No. 2 (2021), 143–148. 

[4] S. Mančevska, M. Orovčanec, Orbits tending to infinity under sequences of 
operators on Hilbert spaces, Filomat 21:2 (2007), 163–173. 

[5] V. Müller, J. Vršovský, Orbits of linear operators tending to infinity, Rocky 
Mountain J. Math., Vol. 39 No. 1(2009), 219–230. 

[6] V. Müller, Spectral theory of linear operators and spectral systems in 
Banach algebras, (2nd ed.), Operator Theory: Advances and Applications Vol. 
139, Birkhäuser Verlag AG, Basel - Boston - Berlin, 2007. 

[7] K. Yoshida, Functional Analysis, 5th ed. Springer-Verlag, Berlin, Heidelberg, 
1974. 

 
Faculty of Information and Communication Technologies, University ”St. 
Kliment Ohridski”, Bitola, Republic of North Macedonia  
E-mail address: sonja.manchevska@uklo.edu.mk 

Institute of Mathematics, Faculty of Natural Sciences and Mathematics, 
University of Ss. Cyril and Methodius, Skopje, Republic of North Macedonia 
E-mail address: marijaor@iunona.pmf.ukim.edu.mk 

 


	tdbkZPDRMEGf6XKjOKWUkQ
	03_N-tuple-weak-orbits-Hilbert-S.Manchevska-M

