Union of Mathematicians of Macedonia - ARMAGANKA

X SEMINAR OF DIFFERENTIAL EQUATIONS AND ANALYSIS

hr

and 2nd CONGRESS OF DIFFERENTIAL EQUATIONS, MATHEMATICAL ANALYSIS AND APPLICATIONS

CODEMA 2022

Proceedings of the CODEMA 2022 Зборник на трудови од CODEMA 2022

Skopje, 2023

Уредник: Алекса Малчески Илустратор: Ана Иванова Печатница: Ацетони-Прилеп CD електронска публикација Тираж: 50

Proceedings of the CODEMA 2022 Зборник трудови од CODEMA 2022

ORGANIZING COMMITTEE:

d-r Aleksa Malcheski, President d-r Risto Malcheski d-r Daniel Velinov **d-r Pavel Dimovski** d-r Anevska Katerina d-r Tomi Dimovski d-r Zoran Misajleski d-r Samoil Malcheski d-r Metodi Glavche Zlatko Petkovski

HONORARY COMMITTEE:

Boro Piperevski Borko Ilievski Lazo Dimov

PROGRAM COMMITTEE: d-r Risto Malcheski, President Acad. Stevan Pilipović, Serbia Acad. Sava Grozdev, Bulgaria Acad. Gregoris Makrides, Cyprus Acad Rosen Nikolaev, Bulgaria Acad. Prof. Dr. Hari Srivastava d-r Erdal Karapinar, Turkey d-r Veselin Nenkov, Bulgaria d-r Snježana Maksimović, BIH d-r Ana Vukelić, Croatia d-r Julije Jakšetić, Croatia d-r Slobodan Filipovski, Slovenia d-r Romeo Meštrović, Montenegro d-r Miomir Andjić, Montenegro d-r Nenad Vulović, Serbia dr Aleksandru Mihajlović, Serbia d-r Jelena Vujaković, Serbia d-r Alit Ibrahimi, N.Macedonia d-r Daniel Velinov, N.Macedonia d-r Sanja Atanasova, Nor Macedonia d-r Biljana Zlatanovska, N.Macedonia d-r Limonka Lazarova, N.Macedonia d-r Marija Miteva, N.Macedonia

Skopje, 2023

CONTENTS

- 1. A GEOGRAPHICALLY WEIGHTED REGRESSION APPROACH IN REGIONAL MODEL FOR REAL ESTATE MASS VALUATION
- Natasha Malijanska, Sanja Atanasova, Gjorgji Gjorgjiev, Igor Peshevski, Daniel Velinov
 ПИСА ТЕСТИРАЊЕТО ВО СРЕДНИТЕ СТРУЧНИ УЧИЛИШТА Ана Димовска, Томи Димовски
- 3. APPLICATION OF MARKOV CHAINS IN BIOLOGY Natasha Stojkovikj, Limonka Koceva Lazarova, Aleksandra Stojanova Ilievska
- 4. CHAIN CONNECTED SET IN A SPACE Zoran Misajleski, Aneta Velkoska, and Emin Durmishi
- ABOUT THE T=GEOMETRIC INTRERPRATIONS ON THE BASIC INTERACTIONS AND SOME CONSEQUENCES Kostadin Trenchevski
- 6. COSINE AND COTANGENT THEOREMS FOR A QUADRILATERAL, TWO NEW FORMULAS FOR ITS AREA AND THEIR APPLICATIONS
- V. Nenkov, St. Stefanov, H. Haimov, A. Velchev 7. **DEFORMED SPHERICAL CURVES**
- Marija S. Najdanović, Miroslav D. Maksimović, Ljubica S. Velimirović, Svetozar R. Rančić
- 8. ANALYSIS OF STUDENT ACHIEVEMENTS IN TEACHING COMPLEX NUMBERS USING GEOGEBRA SOFTWARE Dragana Nedić, Gordana Jotanović, Tijana Paunović, Aleksandar Kršić
- SEVERAL LOCI GENERATED BY A MOVING TRIANGLEBETWEEN TWO FIXED CIRCLES
- Prof. Sava Grozdev, Prof. Veselin Nenkov, Assoc. Prof. Tatiana Madjarova
 10. APPLICATION OF SEMIVARIOGRAMS AND KRIGING IN GEOTECHNICAL MODELLING
- Marija Maneva, Igor Peshevski, Milorad Jovanovski, Zoran Misajleski, Daniel Velinov 11. INVERTIBILITY OF LINEAR COMBINATIONS OF K-POTENT MATRICES
- Marina Tošić, Jelena Vujaković 12. STATISTICAL ANALYSIS OF REPAIR RATE FOR MAINTENANCE DECISION-
- 12. STATISTICAL ANALYSIS OF REPAIR RATE FOR MAINTENANCE DECISION-MAKING Nataša Kontrec, Stefan Panić, Biljana Panić, Mejrima Ljajko
- GAMES IN MATHEMATICS INSTRUCTION
- Marina Manić¹, Eugen Ljajko², Marina Tošić 14. Razvoj na elasticnosta na mislenjeto kaj uchenicit
- Razvoj na elasticnosta na mislenjeto kaj uchenicite od pochetnoto obrazovanie Metodi Glavche, Malcheski Risto
- 15. N-TUPLE WEAK ORBITS TENDING TO INFINITY FOR HILBERT SPACE OPERATORS
 - Sonja Mančevska, Marija Orovčanec
- 16. STEM APPROACH IN TEACHING MATHEMATICS Marija Miteva, Limonka Koceva Lazarova, Biljana Zlatanovska, Natasa Stojkovik
- CANTOR'S INTERSECTIONS THEOREM IN (3,1, ∇)-G METRIZABLE SPACES Tomi Dimovski, Pavel Dimovski
- WORKING WITH MATHEMATICALLY GIFTED STUDENTS AGED 18 TO 19 Katerina Anevska¹, Valentina Gogovska², Risto Malcheski³,
- 20. The Hanh-Banach Theorem for cyclic 2-subspaces generated by 5 and more elements Aleksa Malcheski
- 21. 2-topological vector space Aleksa Malcheski
- 22. A PARTICULAR SOLUTION TO THE SPECIAL CASE OF A FOURTH-ORDER SHORTENED LORENZ SYSTEM

Biljana Zlatanovska¹, Boro Piperevski², Mirjana Kocaleva Vitanova¹, Marija Miteva

23. SOLVING TASKS FROM LINEAR PROGRAMMING USING GEOGEBRA Elena Karamazova Gelova¹, Mirjana Kocaleva Vitanova², Sonja Mančevska³

N-TUPLE WEAK ORBITS TENDING TO INFINITY FOR HILBERT SPACE OPERATORS

Sonja Mančevska, Marija Orovčanec

Abstract. In this paper we prove some results on the existence of a dense set of pairs in the direct product of an infinite-dimensional complex Hilbert space with itself such that each pair in this set has an *n*-tuple weak orbit tending to infinity for a specific countable family of mutually commuting bounded linear operators.

1. INTRODUCTION

For bounded linear operators on Banach spaces the concepts of *n*-tuple orbits and *n*-tuple weak orbits are defined as follows. If X is a complex and infinitedimensional Banach space, B(X) is the algebra of all bounded linear operators on X and $T_1, T_2, ..., T_n \in B(X)$ are mutually commuting operators, then the *n*tuple orbit of the vector $x \in X$ is the set

$$\operatorname{Orb}(\{T_i\}_{i=1}^n, x) = \left\{ T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x : k_i \ge 0; 1 \le i \le n \right\}.$$
(1.1)

The *n*-tuple orbit *tends to infinity* if

$$\lim_{k_i \to \infty} \left\| T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x \right\| = \infty , \text{ for all } k_j \ge 0 , \ j \ne i , \ 1 \le i, j \le n .$$

For n = 1, the *n*-tuple orbit (1.1) reduces to a simple sequence of form

Orb
$$(T, x) = \{T^n x : n = 0, 1, 2, ...\},\$$

usually referred as *single orbit* (or simply *orbit*) of the vector $x \in X$ under the operator T. If X^* is the dual space of X, i.e., the space of all bounded linear functionals $x^*: X \to \mathbb{C}$, and for $x \in X$ and $x^* \in X^*$, $\langle x, x^* \rangle := x^*(x)$, the *n*-tuple weak orbit of the pair $(x, x^*) \in X \times X^*$ is a set of form

$$\operatorname{Orb}(\{T_i\}_{i=1}^n, x, x^*) = \left\{ \left\langle T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x, x^* \right\rangle : k_i \ge 0; 1 \le i \le n \right\}.$$
(1.2)

The *n*-tuple weak orbit *tends to infinity* if

2010 Mathematics Subject Classification. Primary: 47A05. Secondary: 47A11, 47A25.

Key words and phrases. Hilbert spaces, weak orbits, n-tuple weak orbits, sequences of operators.

$$\lim_{k_i \to \infty} \left| \left\langle T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x, x^* \right\rangle \right| = \infty \text{, for all } k_j \ge 0 \text{, } j \ne i \text{, } 1 \le i, j \le n \text{.}$$

For n=1, the *n*-tuple weak orbit (1.2) reduces to a simple scalar sequence of form

$$\operatorname{Orb}(T, x, x^*) = \left\{ \left\langle T^n x, x^* \right\rangle : n = 0, 1, 2, \ldots \right\},$$

usually referred as *weak orbit* of the pair $(x, x^*) \in X \times X^*$ under the operator T.

For the case of Hilbert spaces, by the Riesz Theorem for representation of a bounded linear functional on Hilbert spaces (cf. [7,III.6]), given an infinitedimensional complex Hilbert space H with an inner product $\langle \cdot | \cdot \rangle$, its dual space

 H^* can be fully identified with the space itself since

$$H^* = \left\{ x \mapsto \langle x | y \rangle, x \in H : y \in H \right\}.$$

Hence, for a set of mutually commuting operators $T_1, T_2, ..., T_n \in B(H)$ the *n*-tuple weak orbits will be the sets of form

Orb
$$(\{T_i\}_{i=1}^n, x, y) = \left\{ \left\langle T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x \, \middle| \, y \right\rangle : k_i \ge 0; 1 \le i \le n \right\}, \ (x, y) \in H \times H .$$

In this paper we will consider only the conditions under which the direct product $H \times H$ contains a dense of pairs (x, y) with *n*-tuple weak orbits tending to infinity that do not involve any requirements upon specific subsets of the spectra of the operators. For $H \times H$ we will assume that is endowed with the product topology. Given an operator $T \in B(H)$, $\sigma(T)$ and r(T) will denote the spectrum and the spectral radius of the operator T, respectively.

2. PRELIMINARY RESULTS

Theorem 2.1. ([6, Theorem V.39.8]) Let H and K be Hilbert spaces, $(T_n)_{n\geq 1}$ be a sequence of operators in B(H,K) and $(a_n)_{n\geq 1}$ be sequence of positive numbers with $\sum_{n\geq 1}a_n < \infty$. Then

- (i) there are $x \in H$ and $y \in K$ such that and $|\langle T_n x | y \rangle| \ge a_n ||T_n||$, for all n;
- (ii) there is a dense subset of pairs $(x, y) \in H \times K$ such that $|\langle T_n x | y \rangle| \ge a_n ||T_n||$, for all n sufficiently large.

Corollary 2.2. ([6, Corollary V.39.9]) Let *H* be Hilbert space and $T \in B(H)$ is such that $\sum_{k=1}^{\infty} ||T^k||^{-1} < \infty$. Then there exist $x, y \in H$ such that $|\langle T^n x | y \rangle| \to \infty$. Moreover, the set of such pairs (x, y) is dense in $H \times H$.

Lemma 2.3. ([6, Lemma V.37.15]) Let $\varepsilon > 0$ and $(a_n)_{n \ge 1}$ be a sequence of positive numbers satisfying $\sum_{n\ge 1}a_n < \varepsilon$. Then there is a sequence of positive numbers $(b_n)_{n\ge 1}$ such that $b_n \to \infty$ as $n \to \infty$ and $\sum_{n\ge 1}a_nb_n < \varepsilon$.

3. MAIN RESULTS

Let $F = \{1, 2, \dots, N\}$ for some $N \in \mathbb{N}$, $N \ge 2$, or $F = \mathbb{N}$.

Theorem 3.1. Let *H* be a Hilbert space, $\{T_i : i \in F\} \subset B(H)$ and $\{(a_{i,j})_{j\geq 1} : i \in F\}$ be a family of sequences of positive numbers such that $\sum_{i\in F, j\geq 1} a_{i,j} < \infty$. Then for any open balls B_1 and B_2 in *H* there are vectors $x \in B_1$, $y \in B_2$ and $k_0 \in \mathbb{N}$ such that

$$\left|\left\langle T_{i}^{k}x|y\right\rangle\right| \geq a_{i,k}\left\|T_{i}^{k}\right\|$$
, for all $i \in F$ and $k \geq k_{0}$.

Proof. Let $T_{i,k} := T_i^k$ $(i \in F, k \in \mathbb{N}), f: F \times \mathbb{N} \to \mathbb{N}$ be the bijective mapping defined with

$$f(i,j) = \begin{cases} i + N(j-1), & \text{if } F = \{1,2,\dots,N\} \\ \frac{(i+j-2)(i+j-1)}{2} + j, & \text{if } F = \mathbb{N} \end{cases},$$

and let $g: \mathbb{N} \to F \times \mathbb{N}$ denote its inverse mapping. If $(a'_n)_{n \ge 1}$ is a sequence of positive numbers and $(T'_n)_{n \ge 1}$ is a sequence of operators defined with

$$a'_n = a_{g(n)}$$
 and $T'_n = T_{g(n)}$, for all $n \in \mathbb{N}$,

then $\sum_{n\geq 1} a'_n = \sum_{i\in F, j\geq 1} a_{i,j} < \infty$. Hence (by Theorem 2.1. (ii), applied on $(a'_n)_{n\geq 1}$, $(T'_n)_{n\geq 1}$ and H = K), if B_1 and B_2 are open balls H, then there are $x \in B_1$, $y \in B_2$ and $n_0 \in \mathbb{N}$ such that

$$\left| \left\langle T'_n x | y \right\rangle \right| \ge a'_n \left\| T'_n \right\|, \text{ for all } n \ge n_0.$$
(3.1)

Since $f: F \times \mathbb{N} \to \mathbb{N}$ is bijective, there is a unique pair $(i_0, j_0) \in F \times \mathbb{N}$ such that $n_0 = f(i_0, j_0)$. Let

$$k_0 = \begin{cases} j_0 + 1, & \text{if } F = \{1, 2, \dots, N\} \\ i_0 + j_0, & \text{if } F = \mathbb{N} \end{cases}$$

If $(i,k) \in F \times \mathbb{N}$ is such that $k \ge k_0$, then by the definition of $f: F \times \mathbb{N} \to \mathbb{N}$ we have:

1. for $F = \{1, 2, ..., N\}$,

$$f(i,k) = i + N(k-1) \ge N(k_0 - 1) = Nj_0 = N + N(j_0 - 1)$$

$$\ge i_0 + N(j_0 - 1) = n_0,$$

2. for
$$F = \mathbb{N}$$
,

$$f(i,k) = \frac{(i+k-2)(i+k-1)}{2} + k \ge \frac{(i_0+j_0-2)(i_0+j_0-1)}{2} + j_0 = n_0$$

Hence, by (3.1) and the definition of $(a'_n)_{n\geq 1}$ and $(T'_n)_{n\geq 1}$ we obtain

$$\left| \left\langle T_i^k x \middle| y \right\rangle \right| = \left| \left\langle T_{i,k} x \middle| y \right\rangle \right| = \left| \left\langle T_{g(n)} x \middle| y \right\rangle \right| \ge a_{g(n)} \left\| T_{g(n)} \right\| = a_{i,k} \left\| T_i^k \right\|,$$

for all $i \in F$ and $k \ge k_0$.

Theorem 3.2. If *H* is Hilbert space and $\{T_i : i \in F\} \subset B(H)$ is a family of operators such that $\sum_{k=1}^{\infty} ||T_i^k||^{-1} < \infty$, for all $i \in F$, then there is a dense set $D \subset H \times H$ such that the weak orbit $(\langle T_i^k x | y \rangle)_{k \ge 0}$ tends to infinity for every pair $(x, y) \in D$ and every $i \in F$. If, in addition, $\{T_i : i \in F\}$ is a family of mutually commuting operators such that the sequence $(T_i^k - T_j^k)_{k \ge 1}$ is norm bounded for all $i, j \in F$, then for every $n \in F$ and $1 < m \le n$, the m-tuple weak orbit

$$\left\{ \left\langle T_{i_1}^{k_1} T_{i_2}^{k_2} \dots T_{i_m}^{k_m} x \middle| y \right\rangle : k_i \ge 0; 1 \le i \le m \right\},\$$

tends to infinity for all $1 \leq i_1 < i_2 < \ldots < i_m \leq n$.

Proof. Let B_1 and B_2 be open balls H. For $i \in F$, let $\varepsilon_i > 0$ be such that

$$\varepsilon_i \left(\sum_{k=1}^{\infty} \frac{1}{\left\| T_i^k \right\|} \right) < \frac{1}{2^{i+1}},$$

and (by Lemma 2.3) let $(b_{i,k})_{k\geq 1}$ be the sequence of positive numbers such that $b_{i,k} \to \infty$ as $k \to \infty$ and

$$\sum_{k=1}^{\infty} \frac{\varepsilon_i b_{i,k}}{\|T_i^k\|} < \frac{1}{2^{i+1}} \,. \tag{3.2}$$

If $a_{i,k} = \varepsilon_i b_{i,k} \|T_i^k\|^{-1}$, $(i,k) \in F \times \mathbb{N}$, then by (3.2) we have

$$\sum_{i \in F, k \ge 1} a_{i,k} = \sum_{i \in F} \sum_{k=1}^{\infty} \frac{\varepsilon_i b_{i,k}}{\|T_i^k\|} < \sum_{i \in F} \frac{1}{2^{i+1}} < \frac{1}{2}.$$

Hence, by Theorem 3.1, there are $x \in B_1$, $y \in B_2$ and $k_0 \in \mathbb{N}$ such that

 $\left|\left\langle T_{i}^{k} x \middle| y \right\rangle\right| \ge a_{i,k} \left\| T_{i}^{k} \right\| = \varepsilon_{i} b_{i,k} \left\| T_{i}^{k} \right\|^{-1} \left\| T_{i}^{k} \right\| = \varepsilon_{i} b_{i,k}, \text{ for all } i \in F \text{ and } k \ge k_{0}.$ Letting $k \to \infty$, we have

$$\lim_{k \to \infty} \left| \left\langle T_i^k x \middle| y \right\rangle \right| = \infty \text{, for all } i \in F.$$
(3.3)

If, in addition, $\{T_i : i \in F\}$ is a family of mutually commuting operators such that the sequence $(T_i^k - T_j^k)_{k\geq 1}$ is norm bounded for all $i, j \in F$, let $M_{i,j} > 0$ is such that $\|T_i^k - T_j^k\| \le M_{i,j}$, for all $k \ge 0$, and let $(x, y) \in H \times H$ be a pair satisfying (3.3). We continue by induction.

Let m = 2 and $1 \le i_1 < i_2 \le n$. By the Cauchy-Bunyakovsky-Schwarz inequality we have

$$\begin{split} \left| \left\langle T_{i_{1}}^{k_{1}+k_{2}} x \left| y \right\rangle \right| &\leq \left| \left\langle T_{i_{1}}^{k_{1}+k_{2}} x - T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x \left| y \right\rangle \right| + \left| \left\langle T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x \left| y \right\rangle \right| \\ &= \left| \left\langle T_{i_{1}}^{k_{1}} (T_{i_{1}}^{k_{2}} - T_{i_{2}}^{k_{2}}) x \left| y \right\rangle \right| + \left| \left\langle T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x \left| y \right\rangle \right| \\ &\leq \left\| T_{i_{1}}^{k_{1}} (T_{i_{1}}^{k_{2}} - T_{i_{2}}^{k_{2}}) x \right\| \cdot \| y \| + \left| \left\langle T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x \left| y \right\rangle \right| \\ &\leq \left\| T_{i_{1}}^{k_{1}} \| \cdot \| T_{i_{1}}^{k_{2}} - T_{i_{2}}^{k_{2}} \| \cdot \| x \| \cdot \| y \| + \left| \left\langle T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x \right| y \right\rangle \right| \\ &\leq \left\| T_{i_{1}}^{k_{1}} \|^{k_{1}} \cdot M_{i_{1},i_{2}} \cdot \| x \| \cdot \| y \| + \left| \left\langle T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x \right| y \right\rangle \right|. \end{split}$$

Since $\left|\left\langle T_{i_1}^n x \middle| y \right\rangle\right| \to \infty$ as $n \to \infty$ (hence $\left|\left\langle T_{i_1}^{k_1+k_2} x \middle| y \right\rangle\right| \to \infty$ as $k_2 \to \infty$, for all $k_1 \ge 0$), the above inequalities imply that

$$\left\langle T_{i_1}^{k_1} T_{i_2}^{k_2} x \middle| y \right\rangle \to \infty$$
, as $k_2 \to \infty$, for all $k_1 \ge 0$.

Similarly,

$$\begin{split} \left| \left\langle T_{i_{2}}^{k_{1}+k_{2}} x \left| y \right\rangle \right| &\leq \left| \left\langle T_{i_{2}}^{k_{1}+k_{2}} x - T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x \left| y \right\rangle \right| + \left| \left\langle T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x \left| y \right\rangle \right| \\ &= \left| \left\langle T_{i_{2}}^{k_{2}} (T_{i_{2}}^{k_{1}} - T_{i_{1}}^{k_{1}}) x \left| y \right\rangle \right| + \left| \left\langle T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x \left| y \right\rangle \right| \\ &\leq \left\| T_{i_{2}} \right\|^{k_{2}} \cdot M_{i_{2},i_{1}} \cdot \left\| x \right\| \cdot \left\| y \right\| + \left| \left\langle T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x \left| y \right\rangle \right|, \end{split}$$

which implies that

$$\left| \left\langle T_{i_1}^{k_1} T_{i_2}^{k_2} x \middle| y \right\rangle \right| \to \infty, \text{ as } k_1 \to \infty, \text{ for all } k_2 \ge 0.$$

To complete the proof, it is enough to show the claim is true for m = n, under the assumption that the (n-1)-tuple weak orbit

$$\left\{ \left\langle T_{i_1}^{k_1} T_{i_2}^{k_2} \dots T_{i_{n-1}}^{k_{n-1}} x \middle| y \right\rangle : k_j \ge 0; 1 \le j \le n-1 \right\},\$$

tends to infinity for all $1 \le i_1 < ... < i_{n-1} \le n$. For a fixed $i \in \{1, 2, ..., n\}$, arbitrary $j \in \{1, 2, ..., n\} \setminus \{i\}$ and fixed $k_1, k_2, ..., k_n \ge 0$ we have

$$\begin{split} & \left| \left\langle T_{1}^{k_{1}} \dots T_{i-1}^{k_{i-1}} T_{j}^{k_{i}} T_{i+1}^{k_{i+1}} \dots T_{n}^{k_{n}} x \middle| y \right\rangle \right| \\ & \leq \left| \left\langle T_{1}^{k_{1}} \dots T_{i-1}^{k_{i-1}} T_{j}^{k_{i}} T_{i+1}^{k_{i+1}} \dots T_{n}^{k_{n}} x - T_{1}^{k_{1}} T_{2}^{k_{2}} \dots T_{n}^{k_{n}} x \middle| y \right\rangle \right| + \left| \left\langle T_{1}^{k_{1}} T_{2}^{k_{2}} \dots T_{n}^{k_{n}} x \middle| y \right\rangle \right| \\ & = \left| \left\langle T_{1}^{k_{1}} \dots T_{i-1}^{k_{i-1}} T_{i+1}^{k_{i+1}} \dots T_{n}^{k_{n}} (T_{j}^{k_{i}} - T_{i}^{k_{i}}) x \middle| y \right\rangle \right| + \left| \left\langle T_{1}^{k_{1}} T_{2}^{k_{2}} \dots T_{n}^{k_{n}} x \middle| y \right\rangle \right| \\ & \leq \left\| T_{1}^{k_{1}} \dots T_{i-1}^{k_{i-1}} T_{i+1}^{k_{i+1}} \dots T_{n}^{k_{n}} (T_{j}^{k_{i}} - T_{i}^{k_{i}}) x \middle\| y \right\| + \left| \left\langle T_{1}^{k_{1}} T_{2}^{k_{2}} \dots T_{n}^{k_{n}} x \middle| y \right\rangle \right| \\ & \leq \left(\prod_{\substack{l=1\\l\neq i}}^{n} \left\| T_{l} \right\|_{k_{l}}^{k_{l}} \right) \cdot M_{i,j} \cdot \left\| x \| \cdot \| y \| + \left| \left\langle T_{1}^{k_{1}} T_{2}^{k_{2}} \dots T_{n}^{k_{n}} x \middle| y \right\rangle \right|. \end{split}$$

Since $j \in \{1, 2, ..., n\} \setminus \{i\}$, by the inductive assumption, we have

$$\left| \left\langle T_1^{k_1} \dots T_{j-1}^{k_{i-1}} T_j^{k_i} T_{i+1}^{k_{i+1}} \dots T_n^{k_n} x \middle| y \right\rangle \right| \to \infty \text{ as } k_i \to \infty \text{ , for all } k_j \ge 0 \text{ , } j \neq i \text{ .}$$

This, together with the above inequalities implies that

$$\left|\left\langle T_1^{k_1}T_2^{k_2}\dots T_n^{k_n}x \middle| y \right\rangle\right| \to \infty \text{ as } k_i \to \infty, \text{ for all } k_j \ge 0, \ j \ne i,$$

which completes the proof. \blacksquare

Corollary 3.3. If *H* is a Hilbert space and $\{T_i : i \in F\} \subset B(H)$ is a family of operators such that $r(T_i) > 1$, for all $i \in F$, then there is a dense set $D \subset H \times H$ such that the weak orbit $(\langle T_i^k x | y \rangle)_{k \ge 0}$ tends to infinity for every pair $(x, y) \in D$ and every $i \in F$. If, in addition, $\{T_i : i \in F\}$ is a family of mutually commuting operators such that the sequence $(T_i^k - T_j^k)_{k \ge 1}$ is norm bounded for all $i, j \in F$, then for every $n \in F$, every $1 < m \le n$ the m-tuple weak orbit

$$\left\{ \left\langle T_{i_1}^{k_1} T_{i_2}^{k_2} \dots T_{i_m}^{k_m} x \middle| y \right\rangle : k_i \ge 0; 1 \le i \le m \right\},\$$

tends to infinity for all $1 \le i_1 < i_2 < \ldots < i_m \le n$.

Proof. If $T \in B(H)$ has a spectral radius r(T) > 1, then $\sum_{k=1}^{\infty} ||T^k||^{-1} < \infty$. Namely, if r(T) > 1, then there is $\lambda \in \sigma(T)$ such that $1 < |\lambda|$. By the Spectral Mapping Theorem, $\lambda^n \in \sigma(T^n)$ for every $n \in \mathbb{N}$. Hence $|\lambda|^n \le r(T^n) \le ||T^n||$ and

$$\sum_{n=1}^{\infty} \frac{1}{\|T^n\|} \le \sum_{n=1}^{\infty} \frac{1}{|\lambda|^n} < \infty$$

Now the conclusion follows from Theorem 3.2. \blacksquare

4. REMARKS ON N-TUPLE ORBITS TENDING TO INFINITY

By the Cauchy-Bunyakovsky-Schwarz inequality we have

$$\left|\left\langle T_{1}^{k_{1}}T_{2}^{k_{2}}\ldots T_{n}^{k_{n}}x\right|y\right\rangle\right| \leq \left\|T_{1}^{k_{1}}T_{2}^{k_{2}}\ldots T_{n}^{k_{n}}x\right\|\cdot \|y\|,$$

for all $(x, y) \in H \times H$, $k_j \ge 0$ and $1 \le j \le n$. These inequalities clearly imply that the *n*-tuple orbit $Orb(\{T_i\}_{i=1}^n, x)$ tends to infinity whenever there is $y \in H$ such that the *n*-tuple weak orbit $\{\langle T_1^{k_1}T_2^{k_2}...T_n^{k_n}x | y \rangle : k_i \ge 0; 1 \le i \le n\}$ tends to infinity. Hence, from the results in the previous section we can derive the following results for *n*-tuple orbits tending to infinity.

Theorem 4.1. If *H* is Hilbert space and $\{T_i : i \in F\} \subset B(H)$ is a family of operators such that $\sum_{k=1}^{\infty} ||T_i^k||^{-1} < \infty$ for all $i \in F$, then there is a dense set $D \subset H$ such that the orbit $\operatorname{Orb}(T_i, x)$ tends to infinity for every $x \in D$ and every $i \in F$. If, in addition, $\{T_i : i \in F\}$ is a family of mutually commuting operators such that the sequence $(T_i^k - T_j^k)_{k\geq 1}$ is norm bounded for all $i, j \in F$, then for every $n \in F$, every $1 < m \le n$, the m-tuple orbit $\operatorname{Orb}(\{T_{i_j}\}_{j=1}^m, x)$ tends to infinity for all $1 \le i_1 < i_2 < \ldots < i_m \le n$.

Corollary 4.2. If *H* is Hilbert space and $\{T_i : i \in F\} \subset B(H)$ is a family of operators such that $r(T_i) > 1$ for all $i \in F$, then there is a dense set $D \subset H$ such that the orbit $Orb(T_i, x)$ tends to infinity or every $x \in D$ and every $i \in F$. If, in addition, $\{T_i : i \in F\}$ is a family of mutually commuting operators such that the sequence $(T_i^k - T_j^k)_{k\geq 1}$ is norm bounded for all $i, j \in F$, then for every $n \in F$, every $1 < m \le n$, the m-tuple orbit $Orb(\{T_{i_j}\}_{j=1}^m, x)$ tends to infinity for all $1 \le i_1 < i_2 < \ldots < i_m \le n$.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

References

[1] S. Mančevska, M. Orovčanec, *Few results on weak orbits under sequences of operators*, Proceedings of the Fourth International Scientific Conference – FMNS2011, Vol.2, (2011) p.33-40.

[2] S. Mančevska, M. Orovčanec, *N-Tuple Orbits tending to infinity*, E-Proceedings of the First Congress of Differential Equations, Mathematical Analysis and Applications CODEMA 2020, 24–31.

[3] S. Mančevska, *N-Tuple Orbits tending to infinity for Hilbert space operators*, Mat. Bilten 45. No. 2 (2021), 143–148.

[4] S. Mančevska, M. Orovčanec, Orbits tending to infinity under sequences of operators on Hilbert spaces, Filomat 21:2 (2007), 163–173.

[5] V. Müller, J. Vršovský, Orbits of linear operators tending to infinity, Rocky Mountain J. Math., Vol. 39 No. 1(2009), 219–230.

[6] V. Müller, *Spectral theory of linear operators and spectral systems in Banach algebras*, (2nd ed.), Operator Theory: Advances and Applications Vol. 139, Birkhäuser Verlag AG, Basel - Boston - Berlin, 2007.

[7] K. Yoshida, *Functional Analysis*, 5th ed. Springer-Verlag, Berlin, Heidelberg, 1974.

Faculty of Information and Communication Technologies, University "St. Kliment Ohridski", Bitola, Republic of North Macedonia *E-mail address*: sonja.manchevska@uklo.edu.mk

Institute of Mathematics, Faculty of Natural Sciences and Mathematics, University of Ss. Cyril and Methodius, Skopje, Republic of North Macedonia *E-mail address*: marijaor@iunona.pmf.ukim.edu.mk