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Abstract - Besides other relevant components encompassing
the dependability aspects of contemporar -Commerce
systems (reliability, maintainability, safety, security, etc.),
availability has always been considered the most prominent
one, having minded its direct impact on Internet companies’
reputation and financial revenues. Being a synonym for a
characteris of a resource/system that is committable,
operable, or usable upon demand to perform its designated
or required function, availability is the single crucial
attribute of each e-Commerce system and a basic
prerequisite that makes the huge difference between success
and failure. In order to assure and maintain pertinent
Quality-of-Service (QoS) levels of Web services being
delivered online, including high availability, stochastic
predictive models have to be developed and evaluated on a
regular basis. The aim of the paper is to address the most
significant aspects of stochastic modeling of e-Commerce
systems’ availability, using the class of Generalized
Stochastic Petri Nets (GSPNs), as well as Continuous-Time
Markov Chai (CTMCs), a class of stochastic processes
underlying GSPNs. A few basi -Commerce system
configurations have been modeled and analyzed in the case
of a corrective maintenance. The current possible analysis
methodologies that address the concept of availability have
been discussed, and adequate software too been
reviewed, as well.

I.  INTRODUCTION

As e-Commerce paradigm goes mainstream, a
tremendous attention has been put on e-Commerce
systems, which are expected to deliver high quality
services online. Besides exhibiting high performances to
e-Customers regarding the operational speed or response
time, they also have to be highly dependable, i.e. highly
reliable and available. Indeed, the assessment of
performances, reliability and availability is a key step in
the design, analysis and tuning of computer systems,
especially e-Commerce systems. In general, the
availability of Web services becomes one of the most
significant characteristics that should be successfully
addressed by companies which run secure trading
businesses, based on Internet technologies, e.g.
e-Commerce, electronic funds transfer (EFT) systems,
e-Banking, online auctions, as well as online brokerage.
For such businesses, the availability of Web services is a
key QoS metrics, since the unavailability of the
corresponding Web services may lead to terrific losses,
often measured in millions of dollars per hour [1]. This is
even more exaggerated with larg -Commerce systems

that deploy mission-critical applications. It is not
uncommon for large Web sites to be extremely complex,
since they are built out of thousands of components
including servers, firewalls, communication links, storage
boxes, data centers and all sorts of software systems. On
the other hand, the rush to become visible/operational
online as soon as possible, often comes at the expense of
lack of careful design and testing, leading to many system
vulnerabilities. The lack of proactive and continuous
capacity planning procedure may lead to performance
problems, but also to an unexpected unavailability, caused
by failed routers, LAN segments, or other components.

Downtimes may be financially devastating to such
companies, since average downtime cost per hour may
range from thousands to millions of dollars, depending on
the industry [2]. For instance, the average hourly
downtime cost in credit card transactions is estimated to
be $6.5 million [3]. Recently, Emerson Network Power
[4] has released a research report based on the Ponemon
Institute study [5] that makes an insight to the full
economic costs of unplanned data center outages, stating
that the serious financial consequences can range from a
minimum cost of almost $40,000 to a maximum cost of
more than $1,000,000 per a single incident (more than
$11,000 per minute). According to the same source, the
average cost per a single downtime incident is estimated
more than $500,000. In addition, based on a survey
carried out by ITIC, DiDio [6] has revealed a significant
fact saying that, while online companies cannot achieve a
‘zero downtime’ in practice, one out of ten of them needed
an availability greater than 99.999% in 2010, i.e. a ‘near
zero-time downtime’. These figures are pretty much in
line with observations claiming that “59% of Fortune 500
companies experienced a minimum of 1.6 hours of
downtime per week” in 2010 [7].

However, the consequences of downtimes are far from
being solely financial by nature, since their impact on the
overall business performances also have long-term and
intangible effects, like severe reputational damages,
customer churn, as well as lost business opportunities,
which can be devastating for doing business online.

All of these important insights point out the great urge
of e-Commerce companies to assure and maintain
pertinent QoS levels of Web services being delivered
online, including high availability. Therefore, stochastic
predictive models, both analytical and simulation-based
ones have to be continually developed and evaluated.
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II.  AVAILABILITY: DEFINITION AND BASIC CONCEPTS

For each service request made to a system, there are
several possible outcomes that can be generally classified
into three disjoint categories, i.e. (1) the system may
perform the service correctly, (2) the system may perform
the service incorrectly, and (3) the system may refuse to
perform the service. If the system does not perform the
service at all, it is said to be down, failed, or unavailable.
Availability belongs to the group of global metrics, which
reflect the systemwide utility. It can be defined as a
fraction of time during which a given sy is
available/operational to service use  requests [3] [8] [9].
This is recognized as steady-state availability. Yet another
definition of availability says that it is the probability that
a system/component is functioning properly at a given
instance of time, no matter how much times it has been
down before [9]. This is known as instantaneous, i.c.
point, transient, or time-dependent availability. The
unavailability of a system is a complement of its
availability. It can be caused by many reasons which can
be categorized in several subcategories by applying
taxonomy following three different dimensions, including:
the duration (e.g. permanent, recoverable, and transient
failures), the effect (e.g. functional and performance
failures), and the scope (e.g. partial and total failures) [3].

A concept very similar to that one of availability is
reliability, which can be defined as the probability that a
system/component is functioning properly and constantly
over a fixed time period [10]. The difference between the
two concepts is that reliability takes into account the
corrective maintenance of the failed systems/components.
In fact, the concept of availability is based on the notion
that a given system/component alternates between two
states: a state when it is operational (uptime, up period),
and a state when it is not functional (downtime, down
period).

It is a common practice to label computer systems by
the number of ‘9’s, representing their availability. Table 1
depicts a classification of computer systems according to
how good their availability is, showing also the projected
number of minutes of downtime per year, for each
availability class [11]. Each e-Commerce site has to be
able to make a real estimation of the needed availability
class, taking into consideration potential revenue losses
due to unavailability and upgrading costs.

TABLE L CLASSES OF SYSTEMS VS. THEIR AVAILABILITY
SR, Time Being
Availability Availability Unavailable System Type
Class .
[min/year]

1 90.0% 52,560 Unmanaged

2 99.0% 5,256 Managed

3 99.9% 525.6 Well-managed

4 99.99% 52.56 Fault-tolerant

5 99.999% 5256 Highly
availabl

6 99.9999% 05256 Very highly
ava

7 99.99999% 0.05256 Ultra available

Fig. 1 shows the relationship among the Mean Time to
Failure (MTTF), the Mean Time to Repair (MTTR), and
the Mean Time Between Failures (MTBF), which are the
basic temporal concepts concerning availability.

MTTF , MTTR . MTTF .
4 3 i time
uptime downtime | uptime
MTBF
n-th failure (n+1)-th failure
Figure 1. Relationship among MTTF, MTTR, and MTBF

(Source: Menascé & Almeida, 2002, p. 420)

From Fig. 1, the following two expressions can be
deduced:

Availability = MTTE _  MTTF M
MTBF  MTTR+ MTTF
Unavailability =1_Avallablllty _ MTTR _
MTBF 2
_ wrmm
MTTR+ MTTF

III. COMMON MODELING APPROACHES TO ADDRESS
AVAILABILITY

In general, when it comes to assess any measure that
has been defined previously, there are several options
available, including the following ones: (1) appliance of
subjective, experience-based ad hoc procedures, i.e. rules
of thumb; (2) taking measurements on the real system; (3)
building prototypes and taking measurements; (4)
construction of analytical models to obtain closed-form
solutions; (5) obtaining a numerical solution using a
simulation model either by using specialized software
tools or by performing discrete-event simulation (DES).
Each approach has its own strengths and weaknesses in
terms of its accessibility, ease of construction/appliance,
efficiency, accuracy, and availability of software tools.

Many specialized techniques have been developed so
far, in order to address the concept of availability (along
with the reliability) of systems, including the following
probabilistic, discrete-state models [9]: combinatorial
reliability models: series-parallel reliability block-
diagrams (RBDs), fault trees (FTs), and reliability graphs;
directed acyclic task precedence graphs; product-form
queuing networks (PFQNs); Markov and semi-Markov
models, including Markov reward models; Stochastic Petri
Nets (SPNs). Recently, the usage of dynamic reliability
block-diagrams has been proposed, as a natural extension
of the ordinary reliability block-diagrams, which can be
converted afterwards into Colored Petri Nets (CPNs) to
perform a dynamic analysis of the behavioral features,
including the correctness of the model itself. Also, a
hierarchical approach that combines the advantages of the
reliability block-diagrams and the class of Generalized
Stochastic Petri Nets (GSPNs) has be  presented
recently, to quantify both the reliability and availability. In
addition, the hierarchical composition approach has been
used to evaluate the dependability measures of complex
architectures, based on the appliance of both reliability
block-diagrams and GSPNss.
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It is also worthy pointing out the fact that due to
steadily increasing complexity of real-world computer and
communication systems, the usage of dedicated software
tools for assessing dependability issues have been justified
and encouraged, as well. These include DSPNexpress and
TimeNET, general-purpose software environments that
have been developed by academia, intended for obtaining
steady-state and transient solutions for certain classes of
stochastic Petri Nets, as well as commercially available
software tools, like BlockSim® !, a specialized, yet
commercially available software tool which provides a
system analysis using RBDs and/or FTA approach, or
Availability Workbench™ (AvSim+ and RCMCost)?, for
system availability simulation and reliability centered
maintenance, based on utilization of modeling methods
such as FMECA, reliability block diagram (RBD) analysis
and fault tree (FT) analysis.

IV. MODELING AVAILABILITY WITH GSPNS AND
CTMCs

The class of Generalized Stochastic Petri Nets
(GSPN5) has been initially introduced as a highly suitable
modeling and evaluation tool for addressing performances
of computing systems. Within GSPN each transition has
been assigned a firing time which can be either
exponentially distributed (timed transitions), or constant
zero (immediate transitions). Immediate transitions always
have priority over timed ones to fire. However, if several
immediate transitions compete for firing, a specified
probability mass function (pmf) is used to break the tie.
On the other hand, if several timed transitions compete for
firing, a race model is applied so that a transition whose
firing time elapses first is the next one to fire. The finite
reachability set of a bounded GSPN can be partitioned
into two disjoint subsets consisting of vanishing and
tangible markings. Vanishing markings comprise those in
which at least one immediate transition is enabled, whilst
tangible markings include those where only timed
transitions or no transitions are enabled. From a given
GSPN, an extended reachability graph (ERG) can be
generated, containing the markings (both vanishing and
tangible ones) of the reachability set as nodes, being
connected with arcs showing the transitional rates to move
from a given marking to another one. Based on ERG, a
reduced reachability graph (RRG) can be constructed,
comprised of only tangible markings. Actually, the
resulting RRG of a given GSPN model is its underlying
CTMC [12] [13].

The stochastic process underlying an arbitrary GSPN
model is known as Continuous-Time Markov Chain
(CTMC). In fact, Marsan, Conte, and Balbo [14] have
proved that exactly one CTMC corresponds to a given
GSPN under condition that only a finite number of
transitions can fire in finite time with non-zero
probability. CTMC is a mathematical model which takes
values in some finite or infinitely countable set, known as
state space S, and for which the time spent in each state
takes non-negative real values, exponentially distributed.
This continuous-time stochastic process is being

! BlockSim® is a registered trademark of ReliaSoft Corp.
2 Auvailability Workbench™ is a registered trademark of Isograph, Inc.

characterized by the Markov property, known also as the
‘memoryless property’: the future behavior of the
model/system (both remaining time in the current state
and choosing next state) depends only on the current state
of the model, and not on its past behavior. Each CTMC is
being uniquely defined by (1) the state space S, (2) the
corresponding transition rate quadratic matrix O, known
as an infinitesimal generator matrix, having dimensions
equal to that of the state space S, and (3) the initial
probability distribution row-vector, defined on the state
space S. For states i # j, the elements g; of the matrix O
are non-negative, describing the rates the stochastic
process transits from state i to state j. However, the
elements ¢ii (i = j) comprising the main diagonal are
defined such that each row of the matrix Q sums to zero.

For a given CTMC, two types of evaluations are
possible, including a transient and a steady-state analysis.
The transient (time-dependent, instantaneous) behavior of
a CTMC describes the temporal evolution of the modeled
system in each single instance of time. The analysis of the
steady-state behavior of a CTMC, also known as a
limiting behavior, yields a stationary probability
distribution, and refers to a study of the stochastic process’
convergence when time tends to infinity (¢t — ). The
steady-state probability distribution depends neither on the
initial probability distribution, nor on time [12] [15].

Since GSPNs and CTMCs are mutually equal and
semantically identical modeling approaches, we proceed
by addressing the availability of three specific
configurations of e-Commerce systems, using those two
modeling paradigms interchangeably. Both approaches are
suitable for constructing analytical models to obtain
closed-form solutions.

A. The Basic Configuration of an e-Commerce System

On a system level, the most simple configuration of a
typical e-Commerce Web site consists of a single system,
which alternates between two possible states: operational
(up, available) and non-operational (down, unavailable).
The occurrence of failures is a stochastic process, i.e. it is
a Poisson process, since the following three criteria have
been met: (1) failures occur consecutively, i.e. the
probability that two failures will occur at the same point of
time is equal to zero; (2) the number and intensity of
failures in the future is independent on what have
happened in the past; (3) the number of failures in the
future is an independent and identically distributed (i.i.d.)
random variable in time, i.e. the process is stationary. In
addition, the times between any two consecutive failures
comprise an i.id. random variable, exponentially
distributed. Since the Markov property is fulfilled at each
particular instance of time, the expected, i.e. the mean
time to the next occurrence of a failure (MTTF) is a
constant, given by 1/4, where A is the failure rate.
Consequently, the mean time to the next repair (MTTR) of
the system, after it has failed down, is given by 1/, where
u is the repair rate. Knowing this, the availability of the
system which is subject to failure and repair can be
represented by a two-state homogeneous Continuous-
Time Markov Chain (CTMC), depicted on Fig. 2. This is
the simplest possible CTMC, which can be used to model
the stochastic behavior of many real systems [12].
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A=1/MTTF

(1) (1)

w=1MTTR

Figure 2. Two-state CTMC availability model
(a standard configuration)

Since CTMC is the underlying stochastic process of
the class of Generalized Stochastic Petri Nets (GSPNs),
the corresponding GSPN model is shown on Fig. 3. Both
representations are mutually equivalent regarding their
semantics.

P_system_work

{2)

T_failure

A=1MTTF

T_repair

1#=1/MTTR
P_system_fail

Figure 3. GSPN availability model
(a standard configuration)

In fact, the CTMC on Fig. 2 can be obtained directly
from the GSPN model on Fig. 3, since the two states
represent the two tangible markings within the
reachability graph, deduced from the GSPN model. The
infinitesimal generator matrix of the CTMC is given by

(3):
-A A
Q=[ } 3)
JZ

The transient solution of the CTMC can be obtained
from the Kolmogorov differential equation (4) [12]:

£§Q=ddQ (4)

Within (4), 7 () denotes the vector containing the
transient probabilities, 7 (¢) and 7, (¢) of being in the
states S1 and S2 (Fig. 2), respectively, i.e.
ﬂ(l):[ﬂ'l (1) =, (t)] , where 7 (t)+m,(t)=1. The
resulting transient probability functions for both states, S1
and S2, are consequently given by (5) and (6) [12], and

the availability as a function of 4 and g, in a given time
instance ¢ = 0.5, is presented on Fig. 4:

__ Kk A Aaru)t

7 (1) A+ﬂ+ﬂ+ﬂ(e | (5)
A A A

ﬂz(t)_/1+,u A+u (e ) ©

Transient availability
=0.5)

Probability, t

Repair rate, u

Figure 4. 3D surface showing the availability of a standard
configuration, for 4 and u ranging from 0.0 to 10.0, and ¢ = 0.5

So, the instantaneous (transient) availability of the
systemA(t) in a specific time instance ¢ can be obtained
by using the expression for calculating 7, (7), given by
(5), whilst the instantaneous (transient) unavailability of
the system is represented by 7, (¢), given by (6). The
limiting (steady-state) availability 4 of the system can be
obtained from the expression for calculating 7 (¢) , by
letting ¢ > o (Fig. 5), i.e.

1
A= lim 7, (1) = —H— = — MTTR
t—0 A+u 1 N 1 7
MTTF  MTTR
_ MTTF _ MTTF
"~ MTTF + MTTR MTBF

Steady-state availabil wl(t),7—> ©
2=04;u=0.7

Probability 1

o 1 4=0636363.. T

T — T T —
< e < e
o i) ~ o

40
50

Time

Figure 5. Asymptotic convergence (t — o) of the transient availability
m,(¢) towards the steady-state availability 4, for A=0.4 and = 0.7

Note that the value of the steady-state availability A ,
given by (7), is identical to the one already given by (1).

B.  Cold Standby Configuration With a Single
Redundant Module

In order to improve the availability of a given system,
a very common technique is to add an additional
redundant module in a cold standby [16], waiting to be
activated when the main module fails (Fig. 6).
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The performance- and reliability-related characteristics
of the spare module are usually not as good as those of the
main module’s, since it is likely to be a cheaper variant of
the main module, thus delivering lower QoS levels of
Web services online.

The extended reachability graph (ERG) of the GSPN
model presented on Fig. 6 is portrayed on Fig. 7, whilst
the reduced reachability graph (RRG), containing only the
tangible markings (i.e. the states S1, ..., S5), is given on
Fig. 8. The tangible markings are presented by ovals,
whilst the only vanishing marking is depicted by a
rectangle. In fact, the RRG is the underlying CTMC of the
GSPN model.

@ )

T_activate_spare

T_repair_main

Vspare
T_failure_main

T_deactivate_spare

P_spare_off

- J

Figure 6. GSPN availability model
(a cold standby configuration with a single redundant module)

MHspare

S5

Hspare

Figure 8. Reduced reachability graph (RRG) of the GSPN model

The infinitesimal generator matrix Q, given on Fig. 9,
can be derived directly from the RRG on Fig. 8.

Transient probabilities are given by a row-

vector ﬂ(l):[ﬂ'l(t) 7y (1) 7 (t) m4(1) ﬂs(f)} ,

since the state space S of the corresponding CTMC have

5

exactly five states (S1, ..., S5), havingZﬁi (r)=1. The
i=1

transient and steady-state probabilities can be derived in

the same way as shown previously. The total availability

of the system is simply a sum of steady-state probabilities

corresponding to states S1, S3 and S5.

J

0

0

0
Hyiaw

A(AMAIN + Hspare

0
0
Aspazre
= (ﬂMA]N + Hspare )
Angam

0
Vspare

~(Aspars + Hyian)
Hspare
0

Arane
- (VSPARE + ha )
0
0
0

ik AMA]'N
Hyamw
Hyvamw
0
Hspare

:

Figure 9. The infinitesimal generator matrix Q

C. Horizontally Scaled Configuration

In order to improve performances, many e-Commerce
Web sites have implemented horizontal scaling (i.e.
scaling out) by multiplying identical systems to work in
parallel in a cluster. This is especially case with particular
components/subsystems, e¢.g. Web servers that have
usually proved out to be bottlenecks in the whole system.
By scaling out, the total capacity is increased, along with
performances, and the whole system becomes highly
available, i.e. if a single system fails, it will not affect the
e-Customer’s ability to continue using slightly degraded
Web services. The CTMC of such configuration including
N =2 systems working in parallel is given on Fig. 10.

s1 QO’ 0
RS2

Figure 10. CTMC modeling the availability of a system with two
modules working in parallel
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It can be easily shown that the above CTMC can be
deduced directly from the GSPN model on Fig. 11.

P_system_work

K,

T_failure_S2

T_repair_S2

\_ Oz;failure_SZ )

Figure 11. GSPN availability model
(system with two modules working in parallel)

The corresponding infinitesimal generator matrix Q of
the CTMC is given by (8).

“(h+h) A P 0
_ Hy _(:ul+/12) 0 /’12 8
R A 0 —(m+h) A ®
0 H H _(/11"'#2)

Since each of the N systems workin in parallel can be
in one of the two possible states (available/non-available)
at each single instance of time, the total number of states
within the CTMC equals 2" for this configuration.

V. CONCLUSION

In highly demanding business environments, such as
e-Commerce, the corrective maintenance costs and
inoperability associated with downtime periods are quite
incompatible with the nature of online Web applications
and services run by electronic stores, which are expected
to be available for their potential e-Customers around the
world 24/7 per year. Availability of e-Commerce systems
is considered one of the main service level goals of any
electronic business, since low availability can cost an
online business a significant lost revenue, reduced market
share, and bad publicity.

Throughout the previous sections, three different
configuration of e-Commerce systems have been
considered regarding their availability. In all three cases a
corrective maintenance is supposed to take plac , whilst
the case of preventive one has not been considered at all.
This fact has facilitated the process of stochastic
modeling, since all resulting Petri Net-based models
belong to the class of GSPNs, which are less time-
consuming to analyze compared to models based on
utilization of Deterministic and Stochastic Petri Nets
(DSPNs). The case of preventive maintenance, which is
out of the scope of this paper, assumes inclusion of
scheduled downtimes in regular time periods, which
necessarily imposes utilization of the class of DSPNs and
corresponding analysis methods.

The application of stochastic Petri Nets and Markov
chains has proven to be a powerful and an effective tool
for analyzing availability aspects of various contemporary

e-Commerce systems’ configurations. Stochastic Petri
Nets possess an immense semantic power to capture the
behavior of an arbitrary system/configuration, which
exhibits phenomena like synchronization, concurrency,
blocking, mutual exclusion, parallelism etc. Despite the
fact that Markov chains, applied directly, provide great
flexibility, they are not always intuitive to be built from
scratch, and the size of their state space grows much faster
than the number of systems/components involved, making
both the specification and analysis difficult to carry out.
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