

Graph Database Modeling of Urban Area Road Networks
Ilija Hristoski1 and Marija Malenkovska Todorova2

Abstract – Specific features delivered by the class of Graph
Databases allow for modeling road networks of different scales.
In this paper, we propose and implement a Graph Database
model of a typical road network inherent to urban areas. Such a
database can be used along with diverse information systems, to
provide information of various natures.

Keywords – Road networks, Urban areas, Traffic, Graph
databases, Neo4j.

I. INTRODUCTION

Back in 1736, Leonhard Euler, the great Swiss
mathematician, successfully resolved what later appears to
become a notable historical problem in mathematics, the
famous “The Seven Bridges of Königsberg” problem, and so
laid the foundations of topology and graph theory [1]. Almost
three centuries later, graphs have been rediscovered with the
emergence of graph databases, which make a rapidly growing
segment of modern non-relational databases.

The rapid progress of urbanization has induced, besides all
known benefits, a lot of complex, yet highly important issues
to be concerned about, such as traffic congestion and
pollution. Inner human migrations that happen on a daily basis
have pointed out the necessity of efficient and reliable
transportation, as well as enlarged and enriched urban road
network infrastructure. Effective traffic management that
would lead to improving traffic flows and reducing both the
congestion and pollution in urban areas needs a large amount
of diverse data to be acquired and stored properly and
processed quickly.

Inspired by Euler’s approach to representing geographical
topology with graphs, and having minded the need of
effective traffic management, the paper focuses on exploring
the possibilities of representing urban area road networks with
state-of-the-art graph databases. More precisely, the aim is to
illustrate the procedure of manual building of such a database
from scratch, as well as to point out the vast potentials and
benefits of their application in a modern traffic science.

The rest of the paper is organized as follows. The most
recent research related to the substance elaborated hereby is
given in Section II. Section III provides a brief overview of
graph databases, their basic building blocks, and their most
notable characteristics. The analysis of data requirements is
given in Section IV. Section V focuses on the implementation
specifics using Neo4j and CQL. The last section concludes.

II. RELATED RESEARCH

The application of graph databases in technical sciences,
especially in the sphere of transportation and traffic sciences,
has become mainstream during recent years. Some of the most
notable research endeavors are being attributed to Czerepicki,
who sheds light on the perspectives of using NoSQL
databases in intelligent transportation systems [2], and also
presents an innovative concept of applying graph databases in
transport information systems, by implementing the solution
of finding the optimal route between two stops in a public
transport environment [3]. In addition, Zheng et al. proposed a
spatio-temporal data model based on a graph database, which
integrates the three temporal GIS’s key elements: space, time
and attributes [4]. The urban data integration (UDI)
framework, which is capable of integrating heterogeneous
urban data stored in a graph database, has been introduced in
[5]. The concepts, methodologies, and applications of urban
computing, including many transportation issues, have been
elaborated in [6]. The usage of the Neo4j graph database in
modeling urban traffic has been explained in [7].

III. GRAPH DATABASES

Graph databases belong to the family of NoSQL databases.
Thanks to the fact that “in graph databases, relationships are
considered to be ‘first-class citizens’”, they address one of the
great macroscopic business trends of today: “leveraging
complex and dynamic relationships in highly connected data
to generate insight and competitive advantage” [8]. They
organize and store data in the form of a graph, based on the
mathematical principles of the graph theory. Fundamentally, a
graph can be considered as a collection of nodes (vertices),
graphically depicted by circles/bubbles, and edges (arcs),
portrayed by directed arcs connecting two nodes. Nodes
typically represent entities (i.e. particular instances of entity
types), whilst edges are used to represent various relationships
between those entities. Both nodes and edges can hold
detailed data (i.e. attributes) in a ‘property/value’ manner, to
describe the entities represented by nodes and to depict the
nature of relationships among them, respectively.

Neo4j is the pre-eminent and pre-dominant graph database
engine, offering ACID transactions, native graph data storage
(it is fully optimized and designed for storing and managing
graphs), and graph data processing, i.e. an index-free
adjacency (connected nodes physically ‘point’ to each other in
the database). It supports the Cypher query language (CQL),
which aims to use an ‘ASCII-art’-like style syntax to make
storing and querying of graph data as easy as possible.

Graph databases are inherently schema-less and are
characterized by high efficiency, scalability, and ability to
handle a large number of concurrent users.

1Ilija Hristoski is with the “St. Kliment Ohridski” University –
Bitola / Faculty of Economics, Prilepski Braniteli St 133, 7500
Prilep, North Macedonia, e-Mail: ilija.hristoski@uklo.edu.mk

2Marija Malenkovska Todorova is with the “St. Kliment Ohridski”
University – Bitola / Faculty of Technical Sciences, Makedonska
Falanga St 37, 7000 Bitola, Republic of North Macedonia, e-Mail:
marija.malenkovska@uklo.edu.mk

DOI 10.20544/TTS2021.1.1.21.p08
UDC••656.11:711.4]:[004.652:519.179
Original scientific paper

30

IV. ANALYSIS OF DATA REQUIREMENTS

Instead of transforming the relational database schema or
the E-R diagram of a real (existing) or generic (non-existing)
transport information system into a graph database model
through the process of logical mapping, the process of
physical mapping of urban area road network directly into a
corresponding graph database model is being exploited and
elaborated in this paper instead. It can be carried out in two,
mutually exclusive, and inverse, ways, a primal way and a
dual one, which are both based on the usage of urban area
road maps. From a graph database perspective, the basic
features of these two approaches are the following ones:

 The primal way; Road intersections are modeled as
nodes (graph vertices), and particular road sections are
modeled as relationships (graph arcs, graph edges)
between two consecutive nodes;

 The dual way; Particular road sections are modeled as
nodes, and road intersections are modeled as
relationships connecting two consecutive nodes.

In this paper, the focus is put on the primal way, taking into
account the following assumptions:

 An urban road network consists of roads and road
intersections;

 A road consists of one or more road sections;

 A road section is a segment (i.e. fragment) of a road
connecting two consecutive (i.e. adjacent) road nodes
on a road map; The traffic on a road section can occur
in one or two directions; Each direction can include
one or more traffic lanes; In a graph database, a road
section corresponds to a relationship connecting two
consecutive nodes;

 A road node is a point on a road map, which can be
either a terminal node (i.e. a road breaking point at the
border of a road network map, and a beginning/ending
of a road inside the road network map) or a junction
node (i.e. a road intersection inside the road network
map); Road nodes connect road sections into a road
network topology; In a graph database, a road node
corresponds to a node;

 A road intersection is a road node that connects two or
more road sections.

The equivalent general graph database model, depicting a
two-way road section connecting two road nodes, is depicted
in Fig. 1. This is a schematic view of the basic building blocks
involved in the construction of a graph database: road nodes
and road sections comprised of one or two traffic directions.

It should be also notified that, in this paper, the manual
procedure of physical mapping of an urban area road network
into a corresponding graph database is described. In fact,
Cypher can be used to load urban road network data into
Neo4j from a file, such as a CSV and JSON file, to facilitate
and speed up the process of building the graph database.
Alternatively, the Neo4j built-in ETL (Extract-Transform-
Load) feature can be used to load such data from a JDBC-
connected RDBMS. In this particular case, there was no urban
road network data available in any electronic format and/or
relational database for the urban area of interest, so the graph
database has to be built manually from scratch.

Fig. 1. Basic structure and elements of the graph database model

vis-à-vis the primal way

Before implementation, one should consider what data (i.e.
attributes) are going to be kept within the graph database’s
nodes and relationships.

A. Data Stored within Nodes

Graph database nodes should keep the following basic
information: unique identifier of the node, node name, urban
area zone name, city name, type of the node (e.g. terminal
node - road breaking point, terminal node - beginning/ending
point of a road, or a junction node - intersection point among
two or more roads), type of an intersection (e.g. T-shaped,
Cross-shaped, Star-shaped, Roundabout), geolocation (i.e.
longitude, latitude as strings in DMS format, altitude, and
geolocation data as decimal degrees.

Besides these mandatory data, graph database nodes can
also include other attributes relevant to the system the graph
database is intended to be used with. For instance, in the case
of a pollution monitoring system based on the utilization of a
distributed system of measurement stations (sensors), graph
database nodes can also include attributes corresponding to
data about air quality (PM10, PM2.5, NOx, CO, CO2, SO2, etc.),
air pressure, air humidity, air temperature, UV radiation, sonic
pollution (noise), gamma radiation, etc., which can be all
acquired and updated in real-time. Alternatively, all of these
measurement parameters can be included in the graph
database as newly added graph nodes, connected to the
existing ones.

B. Data Stored within Relationships

The most relevant information that should be kept in
relationships (i.e. traffic directions of road sections) is unique
identifier of the traffic direction, unique identifier of the road
section, unique identifier of the road (street), name of the road
(street), designation of the road (street), road category, road
significance, road section length, number of traffic lanes,
traffic lane width, maximum speed allowed. Relationships
should also include traffic flow variables, such as average
flow rate, average headway, time mean speed, space mean
speed, traffic density, and distribution of vehicles’ relative
frequencies [%] according to their category (bicycles,
motorbikes, passenger cars, buses, and trucks).

31

V. IMPLEMENTATION

The starting point in the process of implementation is to
obtain a road map of the urban area of interest, which can be
generated based on a satellite image or simply manually
sketched. In this particular case, Google Maps has been
utilized for this task, however, other sources, like Google
Earth, can be used, as well.

Further on, all road breaks at the borders of the map are
being marked up with a symbol of a transparent circle, and
hereby denoted clockwise with strings as ‘x1’, ‘x2’, …, ‘xN’,
N = 13 (Fig. 2). Additionally, all road beginnings/endings, as
well as road intersections within the map are denoted with
integers (e.g. 1, 2, 3, …, M; M = 20), hereby starting from left
to right, and from top to bottom. Specifically, the road
beginnings/endings (e.g. 2, 10, and 12) are being marked up
with a symbol of a yellow-colored, double-lined circle, whilst
all road intersections are being marked up with red-colored
circles. Different ways of notation and markings are used in
order to distinguish between the three types of circles. In Fig.
2, if circles are treated as nodes, and roads between some
nodes as edges, then the resulting structure represents an
undirected finite graph, G.

In order to achieve maximum accuracy and reliability, the
act of building a graph database manually out of such an
undirected graph should be carried out in a consistent and
systematic way, especially in the case of complex graphs, e.g.
disconnected graphs and/or graphs that include a vast number
of nodes (road intersections) and edges (roads). In this
particular case, we have used a slightly modified version of
the Depth First Search (DFS) graph traversal algorithm that
assures consistency in building up the graph database’s nodes
and relationships simultaneously with visiting all the edges in
an undirected graph (a road map). The pseudo-code of the
recursive version of the modified DFS algorithm is as follows:

// G: an undirected graph,
// an input set of edges and nodes (a road map)
// u, v, w: nodes in G
// R: a directed graph,
// an output set of edges and nodes
// (a graph database)
procedure init_DFS(G) {
 for each u in G
 u.visited = FALSE; // on a road map
}
procedure DFS(G, v) {
 create node v in R; // in a graph database
 v.visited = TRUE; // on a road map
 for all neighbouring nodes w of node v in G
 if w.visited = FALSE then
 DFS(G, w);
 else
 {
 if edge(v, w) exists in G then
 create relationship (v, w) in R;
 if edge(w, v) exists in G then
 create relationship (w, v) in R;
 }
}
procedure main(G) {
 init_DFS(G);

 for each u in G
 DFS (G, u);
}

Fig. 2. Road map of the urban area of interest, presented as an

undirected graph encompassing border nodes (breaking points), inner
nodes (intersections and terminal nodes), and edges (roads)

The execution of the modified DFS algorithm assures

visiting all nodes in graph G, depicted by Fig. 2. The manual
generation of the corresponding graph database should be
performed in parallel with the execution of the algorithm.
Each labeling of a node as ‘visited’ on the road map means
creation of a node in the graph database R, which can be either
a terminal node resembling a road breaking point (at map
borders), a terminal node resembling a beginning/end of a
road (within the map), or a communication node resembling
an intersection among two or more roads (within the map). On
the other hand, each adding of an edge (v, w) to the resulting
set of output edges and nodes, R, means the creation of a
relationship between the nodes v and w, i.e. a traffic direction
between two nodes v and w comprising a particular road
segment. This way, the undirected graph in Fig. 2 becomes a
directed graph, and also a visualization of the equivalent
graph database layout (Fig. 3).

The corresponding graph database (Fig. 4) is comprised of
33 nodes and 74 relationships.

Fig. 3. Road map of the urban area, presented as a directed graph

32

It has been fully implemented in Neo4j using CQL (Cypher
Query language).

Fig. 4. Visualization of the Neo4j graph database corresponding to

the road map of the urban area of interest

In Fig. 4, the structure of the graph database is logically

equivalent to the directed graph of the urban area of interest,
represented in Fig. 3. Moreover, the intrinsic data stored
within the graph database’s nodes and relationships match the
facts about the existing urban road network infrastructure.

The appliance of various graph algorithms can be used to
compute numerous metrics for graphs, nodes, or relationships
[9-10]. For instance, given that each traffic direction within
the underlying graph stores data for the attribute
RoadSectionLength (in meters), and given that all nodes
belong to the class road_point, the following CQL code,
which embodies the allShortestPaths graph algorithm,
computes the top 2 shortest paths between any two nodes
(source, target) in a graph, in a descending order (Table I):

CALL
algo.allShortestPaths.stream("RoadSectionLength",
{nodeQuery:"road_point", defaultValue:1.0})
YIELD sourceNodeId, targetNodeId, distance
WITH sourceNodeId, targetNodeId, distance
WHERE algo.isFinite(distance) = true
MATCH (source:road_point)
 WHERE id(source) = sourceNodeId
MATCH (target:road_point)
 WHERE id(target) = targetNodeId
WITH source, target, distance
 WHERE source <> target
RETURN source.NodeName AS source,
 target.NodeName AS target, distance
ORDER BY distance DESC
LIMIT 2

TABLE I
TOP 2 SHORTEST PATHS

source target distance

"20" "12" 453.0
"12" "20" 453.0

VI. CONCLUSION

In this paper, an urban area road network has been modeled
and implemented using a graph database, Neo4j, and Cypher
Query Language. The powerful and expressive semantics
graph databases exhibit in representing relationships among
entities makes them one of the best ways to store and manage
both present and future data related to traffic and
transportation in urban areas.

Based on the graph database data, running CQL code can
provide answers to various users’ queries, such as:
 Selection of nodes and traffic directions belonging to a

particular traffic path between any two arbitrary points,
based on a given criterion;

 Finding out the total length of a given traffic path
between any two arbitrary points;

 Finding out all the shortest paths (in number of steps or
length) between any two arbitrary points in the graph;

 Implementation of various graph-based algorithms
related to spatial navigation; etc.

As a bottom line, it can be concluded that, due to the
unprecedented method of storing data and processing, graph
databases offer a highly appropriate way to represent
information for specific use in traffic and transport sciences.

REFERENCES

[1] R. Shields, “Cultural Topology: The Seven Bridges of
Königsburg, 1736”, Theory, Culture & Society, vol. 29, issue
4/5, pp. 4357, 2012.

[2] A. Czerepicki, “Perspectives of using NoSQL databases in
intelligent transportation systems”, Transport, vol. 92, pp. 29–
38, 2013.

[3] A. Czerepicki, “Application of graph databases for transport
purposes”, Bulletin of the Polish Academy of Sciences,
Technical Sciences, vol. 64, no. 3, pp. 457466, 2016.

[4] L. Zheng, L. Zhou, X. Zhao, L. Liao and W. Liu, “The Spatio-
temporal Data Modeling and Application Based on Graph
Database”, Proceedings of the IEEE 4th International

Conference on Information Science and Control Engineering
(ICISCE 2017), pp. 741746, Changsha, China, 2017.

[5] K. Gupta, Z. Yang and R. K. Jain, “Urban Data Integration
Using Proximity Relationship Learning for Design,
Management, and Operations of Sustainable Urban Systems”,
Journal of Computing in Civil Engineering, vol. 33, issue 2,
2019.

[6] Y. Zheng, L. Capra, O. Wolfson and H. Yang, “Urban
Computing: Concepts, Methodologies, and Applications”, ACM

Transactions on Intelligent Systems and Technology, vol. 5, no.
3, article 38, pp. 38:138:55, 2014.

[7] J. Wood, “Modeling Urban Traffic using the Neo4j Graph
Database”, GGE 4700 Technical Report, University of New
Brunswick, Fredericton, Canada, 2015.
URL: http://www2.unb.ca/gge/News/2015/STC/Wood.pdf

[8] I. Robinson, J. Webber and E. Eifrem, Graph Databases: New

Opportunities for Connected Data, Second Edition, O’Reilly
Sebastopol, CA, USA, 2015.

[9] Neo4j, “The Neo4j Graph Algorithms User Guide v3.5”, 2019,
Neo4j, Inc., URL: https://neo4j.com/docs/graph-algorithms/
current/

[10] M. Needham and A. E. Hodler, Graph Algorithms: Practical

Examples in Apache Spark and Neo4j, O’Reilly, 2019.

33

