
International Conference on Applied Internet and

Information Technologies, 2018

DOI:10.20544/AIIT2018.P09

Performance Evaluation of Clustered Web

Servers Using the Round Robin Scheme

I. Hristoski*, T. Dimovski**, Z. Kotevski**, R. Markoska** and N. Rendevski**

* “St. Kliment Ohridski” University - Bitola/Faculty of Economics, Prilep, Republic of Macedonia
** “St. Kliment Ohridski” University - Bitola/Faculty of ICTs, Bitola, Republic of Macedonia

{ilija.hristoski, tome.dimovski, zoran.kotevski, ramona.markoska, nikola.rendevski}@uklo.edu.mk

Abstract - Contemporary e-Commerce systems are

constantly facing huge and bursty workloads. Continuous

performance evaluation of Web server clusters is a

cornerstone of capacity planning methodology, whilst their

performance modeling and simulation strives to foresee the

system’s behavior under various scenarios. In this paper, we

present a simulation model of a generic e-Commerce Web

server cluster, consisting of a variable number of Web

servers, using the class of Generalized Stochastic Petri Nets

(GSPNs). The model also implements one of the basic static

load balancing algorithms, the Round Robin algorithm, for

equal distribution of incoming HTTP requests across the

cluster’s Web servers. We convey a steady-state and a

transient analysis of the GSPN model by numerical

simulations using dedicated software, TimeNET, and

present the obtained results. This way, we accomplish a

threefold aim, (1) to establish a modeling framework

suitable for performance analysis of arbitrary e-Commerce

Web server cluster; (2) to get valuable insights into the

dynamics and behavior of such systems; (3) to demonstrate

the modeling and evaluation power of TimeNET regarding

the performance analysis of arbitrary Discrete-Event

Dynamic Systems (DEDSs).

I. INTRODUCTION

As e-Commerce paradigm became mainstream
worldwide during the mid-1990s, e-Commerce Websites
began to cope with a heavily increased traffic. As a result,
single Web servers started reaching their capacity limits to
effectively handle the ever-increasing workload. Soon
e-Commerce Websites needed inclusion of additional
Web servers to successfully handle the incoming Internet
traffic generated by e-Customers, which easily outreached
tens of millions of HTTP requests per day. This
phenomenon has led to the emergence of Web clusters, a
locally distributed Web system that is “… an architecture
consisting of multiple Web servers and mechanisms to
route incoming requests among several server nodes in a
user-transparent way” [1]. As a result, a multi-tiered Web
architecture for e-Commerce has emerged (Fig. 1). Cluster
computing appears in several varieties, each offering
different advantages, like high availability, load balancing,
high-performance computing, and grid computing [2]. In
such architectures, it is of an utmost importance to split
the workload as much as equally across the Web servers
(i.e. to balance the workload), in order to preserve the
general availability and high responsiveness of the whole
system.

Load balancing refers to “the process of distributing
the load among various nodes of a distributed system to
improve both job response time and resource utilization
while also avoiding a situation where some of the nodes
are heavily loaded while other nodes are idle or lightly
loaded” [3]. The load distributing policy aims to maximize
the throughput of a distributed system as a whole.

Figure 1. Schematic representation of the first tier of a generic multi-

tiered e-Commerce Website architecture, portraying the load balancer

and a cluster comprised of a number of Web servers

Efficient load balancing is based on the utilization of
appropriate algorithms, known as load-scheduling or load-
balancing methods/schemes. They are used by load
balancers to determine the next Web server to send an
HTTP request to. These can be roughly categorized into
three major categories: static, dynamic, and hybrid [4].

Whilst in dynamic load balancing the workload is
distributed across the Web servers in a non-deterministic
way, based on the feedback information from Web servers
during runtime, in static load balancing the workload is
distributed across Web servers in accordance with a pre-
determined scheme that does not depend on any feedback
information from the Web servers. Static load balancing is
independent regarding the current system state; it does not
depend on the time instances when decisions are made. It

42

should be notified that, in general, dynamic and hybrid
algorithms deliver better results than static algorithms [4].

Because of its intrinsic simplicity, and the ability to be
represented by stochastic Petri nets, in this paper we use
the Round Robin (RR) static load balancing scheme,
which is being widely used both in practice and theory.
The RR scheme is easy to be implemented; it is a
starvation-free algorithm since it presents a circular
queueing process. Theoretically, it assumes that all Web
servers are identical machines, exhibiting identical
performances. In addition, it does not require any inter-
process communication. However, the RR scheme cannot
provide good results in a general case, and/or when jobs
are unequal (i.e. it provides the best performance only for
special purpose applications). Besides, it does not support
the prioritization of more important tasks. In this
particular case, we do not use time-slicing RR scheme on
queued jobs (HTTP requests) in the load balancer, but
rather we assume that complete jobs (e.g. equally sized
HTTP requests) are being distributed towards Web servers
in the cluster.

The paper is organized as follows. In Section 2 some
of the most recent research closely related to the subject
has been elaborated. Section 3 briefly introduces the class
of Generalized Stochastic Petri Nets (GSPNs) that has
been used as a modeling formalism in building the
proposed performance evaluation model. The modeling
framework has been described in Section 4. Section 5
presents the simulation results in two subsections. Section
6 concludes.

II. RELATED RESEARCH

During the recent three decades, an abundance of
research has been done vis-à-vis the performance
evaluation of Web server clusters, the efficiency of load
balancing algorithms, or both. Here we present some of
the most recent and relevant research.

Reference [5] focuses on the simulation of four static
load balancing algorithms that have been carried out in
order to compare their performances. Performance
evaluation and a proposed dynamic architecture of Web
server farms have been studied in [6]. Reference [7] deals
with the evaluation of two performance measures (i.e. the
mean response time and the utilization of Web servers)
using a software simulator that implements the algorithms
of several load balancing schemes, including the RR
scheme. Performance evaluation of distributed Web server
architectures under e-Commerce workloads has been
treated in [8]. The RR scheme has been subject to analysis
in [9] and [10]. A comparison of load balancing
algorithms for clustered Web servers has been carried out
in [11].

III. GENERALIZED STOCHASTIC PETRI NETS (GSPNS)

Initially been proposed by Marsan, Balbo, and Conte
in 1984, the class of Generalized Stochastic Petri Nets
(GSPNs) is now recognized as a widely-known tool for
performance analysis of distributed systems, which
utilizes the graphical notation introduced by ordinary Petri
Nets (PNs) [12-13]. In GSPNs some transitions are timed,
whilst others are immediate. Random, exponentially

distributed firing delays are associated with timed
transitions, whereas the firing of immediate transitions
takes place in zero time, with priority over timed
transitions. In addition, the selection among several
possibly conflicting enabled immediate transitions is made
by utilizing their corresponding firing probabilities. In
general, immediate transitions are used for modeling
instantaneous actions or logical actions (typically
choices), whilst timed transitions with an exponentially
distributed delays are used for modeling the duration of
activities (events) within the GSPN model.

The analysis of a GSPN model can be two-fold: (1)
qualitative: performed by studying the structural
characteristics of the underlying Petri Net; (2)
quantitative: performed by computing the steady-state
(stationary) and/or the transient (time-dependent)
probability distributions of the associated stochastic model
(process), equivalent to a GSPN model. GSPNs are
isomorphic to semi-Markov processes, i.e. their
quantitative analysis can be performed on a reduced
Embedded CTMC (Embedded Markov Chain, EMC),
defined solely on a set of tangible states, or by reducing
the GSPN to an equivalent Stochastic Petri Net (SPN)
[13]. The stationary distribution of the underlying
stochastic process is usually a basis for obtaining a
plethora of performance metrics, like calculating the
probabilities of specific state conditions, resource
utilization, expected throughputs, expected number of
clients (active resources), expected waiting times, etc. On
the other hand, transient analysis is a basis for
investigating the system behavior over time, i.e. it
describes the evolution of the observed system up to a
given time and thus it can be used for obtaining specific
performance metrics such as probabilities of reaching
particular states and probabilities of satisfying assigned
deadlines [13].

IV. THE MODELING FRAMEWORK

For demonstration purposes, we come up with a series
of GSPN models of clusters comprised of a different
number of Web servers that implement the RR load
balancing algorithm (Fig. 2). The modeling has been

carried out using TimeNET, a dedicated tool for
modeling and simulation of several classes of Stochastic
Petri Nets, including GSPNs [14-16].

All developed GSPN models are based on the
existence of a single load balancer (a place named P_LB)
and a cluster of an arbitrary number of Web servers (N = 2
… 5), that belong to the first tier of a typical e-Commerce
Website architecture. The workload posed to the load
balancer has an intensity of λ [HTTP requests/s],
represented by a flow of tokens coming from the place
named P_HTTPs at random time instances that follow the
Poisson distribution, after the exponential transition
T_HTTPs fires at a rate of λ = 1/arrival_time. The variable
arrival_time [s] denotes the mean inter-arrival time of
HTTP requests. All incoming HTTP requests are
presented by individual tokens, one per a request, residing
in the place P_LB (i.e. the load balancer).

The GSPN substructure, comprised of both the places
P_choose_WS(i) and immediate transitions

43

T_send_to_WS(i) (i = 2 … 5), along with the place P_LB,
implements the load balancer that distributes the
tokens from the place P_LB (i.e. the HTTP requests)
across the clustered Web servers according to the RR
scheme.

Figure 2. GSPN model of a Web cluster comprised of N = 3 Web

servers and a load balancer that distributes the incoming HTTP requests

according to the Round Robin algorithm

As long as there is a token in the place P_LB and a
token in the place P_choose_WS(i), the immediate
transition T_send_to_WS(i) becomes enabled and fires,
such that a single token is being removed from the places
P_LB and P_choose_WS(i), and a single token is being
put to the place P_WS(i)_queue (i = 2 … 5). This means
that an HTTP request has been sent from the load balancer
to the corresponding Web server. At the same time, the
firing of the transition T_send_to_WS(i) also puts a token
in the place P_choose_WS(i+1), to point out the next Web
server an HTTP request should be sent to. The firing of
the last transition T_send_to_WS(N) puts a token back to
the place P_choose_WS1, such that a circle becomes
closed.

During the execution, places P_WS(i)_queue (i = 2 …
5) contain an arbitrary number of tokens, resembling
HTTP requests waiting in a buffer queue to be processed
by particular Web servers, WS(i). Whenever the place
P_WS(i)_idle contains a token (i.e. the corresponding Web
server is idle), the immediate transition T_WS(i) becomes
enabled and fires, taking away a single token from the
place P_WS(i)_queue and putting it into the place

P_WS(i)_process. In such a way, the exponential
transition T_WS(i)_process becomes enabled; it fires after
a mean time delay service_time [s], such that the service
rate μ = 1/service_time [HTTP requests/s].

For simplicity reasons, it is assumed that each of the
Web servers processes HTTP requests at a constant
service rate of μ [HTTP requests/s], i.e. all of them
represent identical machines exhibiting an identical
individual performance, which is often referred to as a
horizontal scaling. In practice, however, it is more likely
that Web servers are going to be different machines that
would process the HTTP requests at rather different
service rates.

Concurrent firings of the exponential transitions
T_WS(i)_process put a single token back in places
P_WS(i)_idle (to denote that the Web server is ready to
process the next HTTP request in the queue), and also put
a token back to the place P_HTTPs, in order to preserve
the initial number of tokens in the model and make its
state-space a finite one. A finite state-space is necessary
for the simulation model to be computationally tractable.

The whole modeled system is equivalent to an
M/M/N/req queuing system, i.e. a multi-server, finite-
capacity system with maximum N servers and req
customers, where the HTTP requests arrive according to a
Poisson process with a rate of λ (i.e. the inter-arrival times
are independent, exponentially distributed random
variables with parameter λ), whilst the service times are
also assumed to be independent and exponentially
distributed with parameter μ [17].

V. SIMULATION RESULTS

Given that the service rate μ has a fixed value of 10
[HTTP requests/s], we have altered the arrival rate λ, so it
took its values from the interval [1 … 35] [HTTP
requests/s], with a step of 2. Thus, the resulting ratio ρ =
λ/μ ranges from 0.1 to 3.5, with a step of 0.2. It should be
notified that such values have been deliberately chosen to

investigate the system behavior when ρ  1 and ρ > 1.

All simulations have been carried out with a finite
initial number of tokens in the place P_HTTPs, req = 35
[HTTP requests]. Further increasing of the value of
variable req, and/or the value N representing the number
of Web servers in the cluster has led to computationally
intractable simulation models, because of the state-state
explosion (e.g. for N = 4 and req = 35, the GSPN model
has 326,340 tangible markings, whilst for N = 5 and req =
35, the GSPN model has 3,247,860 tangible markings!).

The specification of the corresponding reward
measures (performance metrics) for the Web server WS1
is presented in Table 1. The corresponding reward
measures have been defined for all other Web servers
included in the GSPN models, as well. However, since the
distribution of tokens (i.e. HTTP requests) across the
places P_WS(i)_queue, i = 2 … 5 (i.e. Web servers) has
been done using the RR scheme, and since all tokens are
mutually equal, the obtained results (i.e. the values of the
reward measures) for all Web servers are identical, i.e. the
RR scheme assures that all modeled Web servers in the
cluster are equally loaded.

44

TABLE I. DEFINED REWARD MEASURES

Measure TimeNET v4.4 Definition

utilization_WS1 (#P_WS1_proc > 0)

queue_length_WS1 (#P_WS1_queue)

waiting_time_WS1
((#P_WS1_queue) - (#P_WS1_queue > 0))

* arrival_time

Prob_0_requests (#P_WS1_queue == 0)

Prob_x_requests

(x = 1 … 5)
(#P_WS1_queue == x)

Prob_x_and_more_

requests

(x = 0 … 5)

(#P_WS1_queue >= x)

Prob_x_and_less_

requests

(x = 1 … 5)

(#P_WS1_queue <= x)

A. Steady-state analysis

The steady-state (stationary) analysis has been done
using the Stationary Analysis module, which computes the
steady-state solution of the model with continuous time,
by solving the corresponding Embedded Markov Chain
(EMC) [15].

The functional dependency of the Web server
utilization vis-à-vis the arrival rate λ, for a various number
of Web servers in the cluster, is depicted in Fig. 3.

Figure 3. Web server utilization as a function of the HTTP requests’

arrival rate, λ, for different number of Web servers, given that the

service rate μ equals 10 [s1]

Simulations show that, for all values of the arrival rate
λ (i.e. 0 < λ ≤ 9) that precede Web server saturation (i.e.
high levels of utilization, greater than 0.90), adding a
second identical Web server reduces the utilization by half
(50%), adding a third Web server reduces their utilization
by 67%, adding a fourth Web server reduces their
utilization by 75% and adding a fifth Web server reduces
their utilization by 80%, relative to the utilization levels
gained in the reference case (i.e. when a single Web server
is used).

Fig. 4 depicts the average queue length at Web servers
vis-à-vis the arrival rate λ, for a various number of Web
servers in the cluster. Simulation results show that for all

values of the arrival rate λ (i.e. λ  29) that follow Web
server saturation (i.e. high levels of average queue length,

generally greater than 33.5), adding a second identical
Web server reduces the average queue length at Web
servers by more than a half (approximately by 53%).

Figure 4. Average queue length at Web servers as a function of the

HTTP requests’ arrival rate, λ, for different number of Web servers,

given that the service rate μ equals 10 [s1]

Further significant reductions of average queue length
at Web servers are evident by adding a third
(approximately by 75%), fourth, and a fifth Web server to
the cluster, relative to the average queue length gained in
the reference case (i.e. when a single Web server is used).

The average waiting time of HTTP requests in Web
server queues vis-à-vis the arrival rate λ, for a various
number of Web servers in the cluster, is depicted in Fig. 5.

Figure 5. Average waiting time at Web server queues as a function of

the HTTP requests’ arrival rate, λ, for different number of Web servers,

given that the service rate μ equals 10 [s1]

According to the simulations, adding a third, fourth
and fifth Web server in the cluster reduces the average
waiting time of HTTP requests in Web server queues at
least by 91%, 83%, and 76%, respectively, and relative to
each other.

A 3D view of the probability that Web servers are idle
(i.e. there are no HTTP requests waiting in Web server
queues) is shown in Fig. 6. It is obvious that as the ratio ρ
= λ/μ rises, the probability P(r = 0) of having zero HTTP
requests in Web servers’ queues drops down. However,

45

such decrease slows down as the number of Web
servers in the cluster, N, increases. In other words, the
probability P(r = 0) that the Web servers would be idle
rises as their number in the cluster increases.

Figure 6. Probability P(r = 0) that Web servers are idle, as a function

of the ratio λ/μ, and different number of Web servers, given that the

service rate μ equals 10 [s1]

The probability that exactly R HTTP requests are
present in Web server queues, P(r = R), is portrayed in
Fig. 7.

Figure 7. Probability P(r = R) that there are exactly R HTTP requests

waiting in Web server queues, as a function of the ratio λ/μ, given that

the service rate μ equals 10 [s1], for N = 2 Web servers in the cluster

Such probability gets its maximum for R = 1 HTTP
request and continually decreases as the value of R grows.
For N = 2 Web servers in the cluster, the probability
approximates P(r = 1) = 0.16396418 for λ/μ = 1.5 (i.e. for
λ = 15 [HTTP requests/s] and μ = 10 [HTTP requests/s]).

The probability P(r  R) that at least R HTTP requests
are waiting in Web server queues is depicted in Fig. 8.
Obviously, as the ratio ρ = λ/μ increases, such probability
rises from values near to 0 to values near to 1. However,
the increase becomes more severe as the reference number

of HTTP requests in the queues, R, rises, such that P(r 

1) = 0.95882778, whilst P(r  5) = 0.84179076, for λ = 35.

Finally, we also assess the probability P(r ≤ R) that at
most R HTTP requests are waiting in Web server queues,
graphically depicted in Fig. 9. In this case, the probability
decreases as the ratio ρ = λ/μ increases and/or the
reference number of HTTP requests in the queues, R,
decreases, such that P(r ≤ 1) = 0.06956791, whilst P(r ≤ 5)
= 0.18810534, for λ = 35 [HTTP requests/s].

Figure 8. Probability P(r  R) that there are at least R HTTP requests

waiting in Web server queues, as a function of the ratio λ/μ, given that

the service rate μ equals 10 [s1], for N = 2 Web servers in the cluster

Figure 9. Probability P(r ≤ R) that there are at most R HTTP requests

waiting in Web server queues, as a function of the ratio λ/μ, given that

the service rate μ equals 10 [s1], for N = 2 Web servers in the cluster

B. Transient analysis

Transient (time-dependent) analysis has been done
using the Transient Simulation module. It estimates the
system’s behavior until a given time point, but it is
restricted solely to the assessment of basic reward
measures (e.g. excluding the assessment of the waiting
time in Web server queues) [15]. The transient analysis
has been carried out in the case when the Web server
cluster consists of N = 3 Web servers, given that the
maximum number of HTTP requests in the system is req
= 35, the arrival rate λ = 17 [HTTP requests/s], and μ = 10
[HTTP requests/s].

The evolution of the Web server utilization in the
cluster is presented in Fig. 10.

Figure 10. Transient behavior of the Web server utilization

46

The transient analysis of Web server queue length is
depicted in Fig. 11.

Figure 11. Transient behavior of the Web server queue length

Finally, the transient behavior of the probability P(r =
0) that there are no HTTP requests waiting in Web server
queues is shown in Fig. 12.

Figure 12. Transient behavior of the probability P(r = 0) that there are

no HTTP requests waiting in Web server queues

VI. CONCLUSION

Since the Internet traffic increases dramatically on a
daily basis, especially the one being generated by
e-Customers, e-Commerce Websites are facing the
challenges of high availability and high responsiveness of
their Web servers more than ever before. The results of
this study have shown undoubtedly that by the appliance
of the horizontal scaling approach, i.e. by increasing the
number of Web servers in the first hierarchical tier, and by
organizing them logically into a cluster, significant gains
in terms of performance can be achieved.

Such GSPN-based approach has few limitations,
including (1) the inability to model HTTP requests with
variable size (i.e. all tokens are mutually equal, meaning
that the HTTP requests they present have the same/similar
size); and (2) the inability to model other, more efficient,
dynamic schemes of load balancing (i.e. the Round Robin
algorithm is suitable/efficient for load balancing in a case
when the incoming HTTP requests do not differ
significantly from each other vis-à-vis the service
demands they pose to Web servers, like in this particular

case). In addition, TimeNET as a software tool also
exhibits a number of limitations, like (1) the inability to
convey simulations for bigger number of Web servers in
the cluster and/or bigger number of HTTP requests in the
GSPN-based model (i.e. for larger GSPN models), due to
a state-space explosion and a lack of main memory to
handle the computation; (2) the limitation to deal with

finite state-spaces only; (3) the inability to compute other
relevant performance metrics, like the average time tokens
need to proceed from one place to another, distant one.

Future research includes utilization of the class of
Colored Stochastic Petri Nets (CSPNs) to take into
account variable-sized HTTP requests, conducting
performance analyses, and carrying out mutual
comparisons of the results with those obtained by this
study.

REFERENCES

[1] D. A. Menascé and V. A. F. Almeida, “4.6 Server Architectures,”
in Capacity Planning for Web Services: Metrics, Models, and
Methods, Upper Saddle River: Prentice Hall PTR, 2002, pp.
149163.

[2] J. Soininen, “Website Performance Evaluation and Estimation in
an E-business Environment,” Tampere University of Technology
Publication, vol. 1083, Tampere University of Technology,
Tampere, Finland, 2012, pp. 2531.

[3] R. Prajapati, D. Rathod, and S. Khanna, “Comparison of Static
and Dynamic Load Balancing in Grid Computing,” Int. J. Tech.
Res. Engin., vol. 2, issue 7, pp. 13371340, March 2015.

[4] S. Hamadah, “A Survey: A Comprehensive Study of Static,
Dynamic and Hybrid Load Balancing Algorithms,” Int. J. Comp.
Sci. Inf. Tech. Sec., vol. 7, no. 2, pp. 2732, March-April 2017.

[5] H. Rahmawan and Y. S. Gondokaryono, “The simulation of static
load balancing algorithms,” 2009 International Conference on
Electrical Engineering and Informatics, Selangor, Malaysia,
August 2009, pp. 640645.

[6] H. Liu and S. Wee, “Web Server Farm in the Cloud: Performance
Evaluation and Dynamic Architecture,” IEEE International
Conference on Cloud Computing (CloudCom 2009), Beijing,
China, pp. 369380, December 2009.

[7] P. Kanungo, “Scheduling Algorithms in Web Servers Clusters,”
Int. J. Comp. Sci. Mob. Comp., vol. 2, issue 10, pp. 7885,
October 2013.

[8] X. He and Q. X. Yang, “Performance Evaluation of Distributed
Web Server Architectures under E-Commerce Workloads,”
International Conference on Internet Computing (IC 2000), Las
Vegas, NV, USA, pp. 285292, June 2000.

[9] Z. Xu and X. Wang, “A modified round-robin load-balancing
algorithm for cluster-based web servers,” 33rd Chinese Control
Conference, Nanjing, China, pp. 35803584, July 2014.

[10] M. E. Mustafa, “Load Balancing Algorithms Round-Robin (RR),
Least-Connection and Least Loaded Efficiency,” Computer
Science & Telecommunications, vol. 51, issue 1, pp. 2529,
October 2017.

[11] A. Mahmood and I. Rashid, “Comparison of load balancing
algorithms for clustered web servers,” 5th International
Conference on Information Technology & Multimedia (ICIMU
2011), Kuala Lumpur, Malaysia, pp. 16, November 2011.

[12] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G.
Franceschinis, “Modelling with Generalized Stochastic Petri
Nets,” Wiley, 1995.

[13] G. Balbo, “Introduction to Generalized Stochastic Petri Nets,” in
Formal Methods for Performance Evaluation, SFM 2007, Lecture
Notes in Computer Science, vol. 4486, M. Bernardo and J.
Hillston, Eds., Berlin, Heidelberg: Springer, 2007, pp. 83131.

[14] C. Hellfritsch, “TimeNet – Examples of Extended Deterministic
and Stochastic Petri Nets,” Technische Universität Ilmenau
Publication, Ilmenau, Germany, February 2009.

[15] A. Zimmermann and M. Knoke, “TimeNET 4.0 User Manual,”
Faculty of EE&CS Technical Report 2007-13, Technische
Universität Berlin, August 2007.

[16] A. Zimmermann, “Modelling and Performance Evaluation with
TimeNET 4.4,” 14th International Conference on Quantitative
Evaluation of Systems (QEST 2017), Berlin, September 2017.

[17] J. Sztrik, Basic Queueing Theory: Foundations of System
Performance Modeling, GlobeEdit, 2016, pp. 55–57, May 2016.

47

	AIIT 2018
	FICT
	Organizing Partners
	CIP
	Preface
	Content
	I01
	I02
	P01
	P02
	P03
	P04
	P05
	P06
	P07
	P08
	P09
	P10
	P11
	P12
	P13
	P14
	P15
	P16
	P17
	P18
	P19
	P20
	P21
	P22
	P23
	P24
	P25
	P26
	P27
	P28
	P29
	P30
	P31
	P32
	P33
	P34
	P35

