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Abstract - Contemporary e-Commerce systems are 

constantly facing huge and bursty workloads. Continuous 

performance evaluation of Web server clusters is a 

cornerstone of capacity planning methodology, whilst their 

performance modeling and simulation strives to foresee the 

system’s behavior under various scenarios. In this paper, we 

present a simulation model of a generic e-Commerce Web 

server cluster, consisting of a variable number of Web 

servers, using the class of Generalized Stochastic Petri Nets 

(GSPNs). The model also implements one of the basic static 

load balancing algorithms, the Round Robin algorithm, for 

equal distribution of incoming HTTP requests across the 

cluster’s Web servers. We convey a steady-state and a 

transient analysis of the GSPN model by numerical 

simulations using dedicated software, TimeNET, and 

present the obtained results. This way, we accomplish a 

threefold aim, (1) to establish a modeling framework 

suitable for performance analysis of arbitrary e-Commerce 

Web server cluster; (2) to get valuable insights into the 

dynamics and behavior of such systems; (3) to demonstrate 

the modeling and evaluation power of TimeNET regarding 

the performance analysis of arbitrary Discrete-Event 

Dynamic Systems (DEDSs). 

I. INTRODUCTION

As e-Commerce paradigm became mainstream 
worldwide during the mid-1990s, e-Commerce Websites 
began to cope with a heavily increased traffic. As a result, 
single Web servers started reaching their capacity limits to 
effectively handle the ever-increasing workload. Soon 
e-Commerce Websites needed inclusion of additional
Web servers to successfully handle the incoming Internet
traffic generated by e-Customers, which easily outreached
tens of millions of HTTP requests per day. This
phenomenon has led to the emergence of Web clusters, a
locally distributed Web system that is “… an architecture
consisting of multiple Web servers and mechanisms to
route incoming requests among several server nodes in a
user-transparent way” [1]. As a result, a multi-tiered Web
architecture for e-Commerce has emerged (Fig. 1). Cluster
computing appears in several varieties, each offering
different advantages, like high availability, load balancing,
high-performance computing, and grid computing [2]. In
such architectures, it is of an utmost importance to split
the workload as much as equally across the Web servers
(i.e. to balance the workload), in order to preserve the
general availability and high responsiveness of the whole
system.

Load balancing refers to “the process of distributing 
the load among various nodes of a distributed system to 
improve both job response time and resource utilization 
while also avoiding a situation where some of the nodes 
are heavily loaded while other nodes are idle or lightly 
loaded” [3]. The load distributing policy aims to maximize 
the throughput of a distributed system as a whole. 

Figure 1.  Schematic representation of the first tier of a generic multi-

tiered e-Commerce Website architecture, portraying the load balancer 

and a cluster comprised of a number of Web servers 

Efficient load balancing is based on the utilization of 
appropriate algorithms, known as load-scheduling or load-
balancing methods/schemes. They are used by load 
balancers to determine the next Web server to send an 
HTTP request to. These can be roughly categorized into 
three major categories: static, dynamic, and hybrid [4]. 

Whilst in dynamic load balancing the workload is 
distributed across the Web servers in a non-deterministic 
way, based on the feedback information from Web servers 
during runtime, in static load balancing the workload is 
distributed across Web servers in accordance with a pre-
determined scheme that does not depend on any feedback 
information from the Web servers. Static load balancing is 
independent regarding the current system state; it does not 
depend on the time instances when decisions are made. It 
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should be notified that, in general, dynamic and hybrid 
algorithms deliver better results than static algorithms [4]. 

Because of its intrinsic simplicity, and the ability to be 
represented by stochastic Petri nets, in this paper we use 
the Round Robin (RR) static load balancing scheme, 
which is being widely used both in practice and theory. 
The RR scheme is easy to be implemented; it is a 
starvation-free algorithm since it presents a circular 
queueing process. Theoretically, it assumes that all Web 
servers are identical machines, exhibiting identical 
performances. In addition, it does not require any inter-
process communication. However, the RR scheme cannot 
provide good results in a general case, and/or when jobs 
are unequal (i.e. it provides the best performance only for 
special purpose applications). Besides, it does not support 
the prioritization of more important tasks. In this 
particular case, we do not use time-slicing RR scheme on 
queued jobs (HTTP requests) in the load balancer, but 
rather we assume that complete jobs (e.g. equally sized 
HTTP requests) are being distributed towards Web servers 
in the cluster. 

The paper is organized as follows. In Section 2 some 
of the most recent research closely related to the subject 
has been elaborated. Section 3 briefly introduces the class 
of Generalized Stochastic Petri Nets (GSPNs) that has 
been used as a modeling formalism in building the 
proposed performance evaluation model. The modeling 
framework has been described in Section 4. Section 5 
presents the simulation results in two subsections. Section 
6 concludes. 

II. RELATED RESEARCH

During the recent three decades, an abundance of 
research has been done vis-à-vis the performance 
evaluation of Web server clusters, the efficiency of load 
balancing algorithms, or both. Here we present some of 
the most recent and relevant research. 

Reference [5] focuses on the simulation of four static 
load balancing algorithms that have been carried out in 
order to compare their performances. Performance 
evaluation and a proposed dynamic architecture of Web 
server farms have been studied in [6]. Reference [7] deals 
with the evaluation of two performance measures (i.e. the 
mean response time and the utilization of Web servers) 
using a software simulator that implements the algorithms 
of several load balancing schemes, including the RR 
scheme. Performance evaluation of distributed Web server 
architectures under e-Commerce workloads has been 
treated in [8]. The RR scheme has been subject to analysis 
in [9] and [10]. A comparison of load balancing 
algorithms for clustered Web servers has been carried out 
in [11]. 

III. GENERALIZED STOCHASTIC PETRI NETS (GSPNS)

Initially been proposed by Marsan, Balbo, and Conte 
in 1984, the class of Generalized Stochastic Petri Nets 
(GSPNs) is now recognized as a widely-known tool for 
performance analysis of distributed systems, which 
utilizes the graphical notation introduced by ordinary Petri 
Nets (PNs) [12-13]. In GSPNs some transitions are timed, 
whilst others are immediate. Random, exponentially 

distributed firing delays are associated with timed 
transitions, whereas the firing of immediate transitions 
takes place in zero time, with priority over timed 
transitions. In addition, the selection among several 
possibly conflicting enabled immediate transitions is made 
by utilizing their corresponding firing probabilities. In 
general, immediate transitions are used for modeling 
instantaneous actions or logical actions (typically 
choices), whilst timed transitions with an exponentially 
distributed delays are used for modeling the duration of 
activities (events) within the GSPN model. 

The analysis of a GSPN model can be two-fold: (1) 
qualitative: performed by studying the structural 
characteristics of the underlying Petri Net; (2) 
quantitative: performed by computing the steady-state 
(stationary) and/or the transient (time-dependent) 
probability distributions of the associated stochastic model 
(process), equivalent to a GSPN model. GSPNs are 
isomorphic to semi-Markov processes, i.e. their 
quantitative analysis can be performed on a reduced 
Embedded CTMC (Embedded Markov Chain, EMC), 
defined solely on a set of tangible states, or by reducing 
the GSPN to an equivalent Stochastic Petri Net (SPN) 
[13]. The stationary distribution of the underlying 
stochastic process is usually a basis for obtaining a 
plethora of performance metrics, like calculating the 
probabilities of specific state conditions, resource 
utilization, expected throughputs, expected number of 
clients (active resources), expected waiting times, etc. On 
the other hand, transient analysis is a basis for 
investigating the system behavior over time, i.e. it 
describes the evolution of the observed system up to a 
given time and thus it can be used for obtaining specific 
performance metrics such as probabilities of reaching 
particular states and probabilities of satisfying assigned 
deadlines [13]. 

IV. THE MODELING FRAMEWORK

For demonstration purposes, we come up with a series 
of GSPN models of clusters comprised of a different 
number of Web servers that implement the RR load 
balancing algorithm (Fig. 2). The modeling has been 

carried out using TimeNET, a dedicated tool for 
modeling and simulation of several classes of Stochastic 
Petri Nets, including GSPNs [14-16]. 

All developed GSPN models are based on the 
existence of a single load balancer (a place named P_LB) 
and a cluster of an arbitrary number of Web servers (N = 2 
… 5), that belong to the first tier of a typical e-Commerce 
Website architecture. The workload posed to the load 
balancer has an intensity of λ [HTTP requests/s], 
represented by a flow of tokens coming from the place 
named P_HTTPs at random time instances that follow the 
Poisson distribution, after the exponential transition 
T_HTTPs fires at a rate of λ = 1/arrival_time. The variable 
arrival_time [s] denotes the mean inter-arrival time of 
HTTP requests. All incoming HTTP requests are 
presented by individual tokens, one per a request, residing 
in the place P_LB (i.e. the load balancer). 

The GSPN substructure, comprised of both the places 
P_choose_WS(i) and immediate transitions 
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T_send_to_WS(i) (i = 2 … 5), along with the place P_LB, 
implements the load balancer that distributes the 
tokens from the place P_LB (i.e. the HTTP requests) 
across the clustered Web servers according to the RR 
scheme. 

Figure 2.  GSPN model of a Web cluster comprised of N = 3 Web 

servers and a load balancer that distributes the incoming HTTP requests 

according to the Round Robin algorithm 

As long as there is a token in the place P_LB and a 
token in the place P_choose_WS(i), the immediate 
transition T_send_to_WS(i) becomes enabled and fires, 
such that a single token is being removed from the places 
P_LB and P_choose_WS(i), and a single token is being 
put to the place P_WS(i)_queue (i = 2 … 5). This means 
that an HTTP request has been sent from the load balancer 
to the corresponding Web server. At the same time, the 
firing of the transition T_send_to_WS(i) also puts a token 
in the place P_choose_WS(i+1), to point out the next Web 
server an HTTP request should be sent to. The firing of 
the last transition T_send_to_WS(N) puts a token back to 
the place P_choose_WS1, such that a circle becomes 
closed. 

During the execution, places P_WS(i)_queue (i = 2 … 
5) contain an arbitrary number of tokens, resembling
HTTP requests waiting in a buffer queue to be processed
by particular Web servers, WS(i). Whenever the place
P_WS(i)_idle contains a token (i.e. the corresponding Web
server is idle), the immediate transition T_WS(i) becomes
enabled and fires, taking away a single token from the
place P_WS(i)_queue and putting it into the place

P_WS(i)_process. In such a way, the exponential 
transition T_WS(i)_process becomes enabled; it fires after 
a mean time delay service_time [s], such that the service 
rate μ = 1/service_time [HTTP requests/s].  

For simplicity reasons, it is assumed that each of the 
Web servers processes HTTP requests at a constant 
service rate of μ [HTTP requests/s], i.e. all of them 
represent identical machines exhibiting an identical 
individual performance, which is often referred to as a 
horizontal scaling. In practice, however, it is more likely 
that Web servers are going to be different machines that 
would process the HTTP requests at rather different 
service rates. 

Concurrent firings of the exponential transitions 
T_WS(i)_process put a single token back in places 
P_WS(i)_idle (to denote that the Web server is ready to 
process the next HTTP request in the queue), and also put 
a token back to the place P_HTTPs, in order to preserve 
the initial number of tokens in the model and make its 
state-space a finite one. A finite state-space is necessary 
for the simulation model to be computationally tractable. 

The whole modeled system is equivalent to an 
M/M/N/req queuing system, i.e. a multi-server, finite-
capacity system with maximum N servers and req 
customers, where the HTTP requests arrive according to a 
Poisson process with a rate of λ (i.e. the inter-arrival times 
are independent, exponentially distributed random 
variables with parameter λ), whilst the service times are 
also assumed to be independent and exponentially 
distributed with parameter μ [17]. 

V. SIMULATION RESULTS

Given that the service rate μ has a fixed value of 10 
[HTTP requests/s], we have altered the arrival rate λ, so it 
took its values from the interval [1 … 35] [HTTP 
requests/s], with a step of 2. Thus, the resulting ratio ρ = 
λ/μ ranges from 0.1 to 3.5, with a step of 0.2. It should be 
notified that such values have been deliberately chosen to 

investigate the system behavior when ρ  1 and ρ > 1. 

All simulations have been carried out with a finite 
initial number of tokens in the place P_HTTPs, req = 35 
[HTTP requests]. Further increasing of the value of 
variable req, and/or the value N representing the number 
of Web servers in the cluster has led to computationally 
intractable simulation models, because of the state-state 
explosion (e.g. for N = 4 and req = 35, the GSPN model 
has 326,340 tangible markings, whilst for N = 5 and req = 
35, the GSPN model has 3,247,860 tangible markings!). 

The specification of the corresponding reward 
measures (performance metrics) for the Web server WS1 
is presented in Table 1. The corresponding reward 
measures have been defined for all other Web servers 
included in the GSPN models, as well. However, since the 
distribution of tokens (i.e. HTTP requests) across the 
places P_WS(i)_queue, i = 2 … 5 (i.e. Web servers) has 
been done using the RR scheme, and since all tokens are 
mutually equal, the obtained results (i.e. the values of the 
reward measures) for all Web servers are identical, i.e. the 
RR scheme assures that all modeled Web servers in the 
cluster are equally loaded. 
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TABLE I. DEFINED REWARD MEASURES 

Measure TimeNET v4.4 Definition 

utilization_WS1 (#P_WS1_proc > 0) 

queue_length_WS1 (#P_WS1_queue) 

waiting_time_WS1 
((#P_WS1_queue) - (#P_WS1_queue > 0)) 

* arrival_time

Prob_0_requests (#P_WS1_queue == 0) 

Prob_x_requests 

(x = 1 … 5) 
(#P_WS1_queue == x) 

Prob_x_and_more_ 

requests 

(x = 0 … 5) 

(#P_WS1_queue >= x) 

Prob_x_and_less_ 

requests 

(x = 1 … 5) 

(#P_WS1_queue <= x) 

A. Steady-state analysis

The steady-state (stationary) analysis has been done
using the Stationary Analysis module, which computes the 
steady-state solution of the model with continuous time, 
by solving the corresponding Embedded Markov Chain 
(EMC) [15]. 

The functional dependency of the Web server 
utilization vis-à-vis the arrival rate λ, for a various number 
of Web servers in the cluster, is depicted in Fig. 3. 

Figure 3.  Web server utilization as a function of the HTTP requests’ 

arrival rate, λ, for different number of Web servers, given that the 

service rate μ equals 10 [s1] 

Simulations show that, for all values of the arrival rate 
λ (i.e. 0 < λ ≤ 9) that precede Web server saturation (i.e. 
high levels of utilization, greater than 0.90), adding a 
second identical Web server reduces the utilization by half 
(50%), adding a third Web server reduces their utilization 
by 67%, adding a fourth Web server reduces their 
utilization by 75% and adding a fifth Web server reduces 
their utilization by 80%, relative to the utilization levels 
gained in the reference case (i.e. when a single Web server 
is used). 

Fig. 4 depicts the average queue length at Web servers 
vis-à-vis the arrival rate λ, for a various number of Web 
servers in the cluster. Simulation results show that for all 

values of the arrival rate λ (i.e. λ  29) that follow Web 
server saturation (i.e. high levels of average queue length, 

generally greater than 33.5), adding a second identical 
Web server reduces the average queue length at Web 
servers by more than a half (approximately by 53%). 

Figure 4.  Average queue length at Web servers as a function of the 

HTTP requests’ arrival rate, λ, for different number of Web servers, 

given that the service rate μ equals 10 [s1] 

Further significant reductions of average queue length 
at Web servers are evident by adding a third 
(approximately by 75%), fourth, and a fifth Web server to 
the cluster, relative to the average queue length gained in 
the reference case (i.e. when a single Web server is used). 

The average waiting time of HTTP requests in Web 
server queues vis-à-vis the arrival rate λ, for a various 
number of Web servers in the cluster, is depicted in Fig. 5. 

Figure 5.  Average waiting time at Web server queues as a function of 

the HTTP requests’ arrival rate, λ, for different number of Web servers, 

given that the service rate μ equals 10 [s1] 

According to the simulations, adding a third, fourth 
and fifth Web server in the cluster reduces the average 
waiting time of HTTP requests in Web server queues at 
least by 91%, 83%, and 76%, respectively, and relative to 
each other.   

A 3D view of the probability that Web servers are idle 
(i.e. there are no HTTP requests waiting in Web server 
queues) is shown in Fig. 6. It is obvious that as the ratio ρ 
= λ/μ rises, the probability P(r = 0) of having zero HTTP 
requests in Web servers’ queues drops down. However, 
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such decrease slows down as the number of Web 
servers in the cluster, N, increases. In other words, the 
probability P(r = 0) that the Web servers would be idle 
rises as their number in the cluster increases. 

Figure 6.  Probability P(r = 0) that Web servers are idle, as a function 

of the ratio λ/μ, and different number of Web servers, given that the 

service rate μ equals 10 [s1] 

The probability that exactly R HTTP requests are 
present in Web server queues, P(r = R), is portrayed in 
Fig. 7. 

Figure 7.  Probability P(r = R) that there are exactly R HTTP requests 

waiting in Web server queues, as a function of the ratio λ/μ, given that 

the service rate μ equals 10 [s1], for N = 2 Web servers in the cluster 

Such probability gets its maximum for R = 1 HTTP 
request and continually decreases as the value of R grows. 
For N = 2 Web servers in the cluster, the probability 
approximates P(r = 1) = 0.16396418 for λ/μ = 1.5 (i.e. for 
λ = 15 [HTTP requests/s] and μ = 10 [HTTP requests/s]). 

The probability P(r  R) that at least R HTTP requests 
are waiting in Web server queues is depicted in Fig. 8. 
Obviously, as the ratio ρ = λ/μ increases, such probability 
rises from values near to 0 to values near to 1. However, 
the increase becomes more severe as the reference number 

of HTTP requests in the queues, R, rises, such that P(r  

1) = 0.95882778, whilst P(r  5) = 0.84179076, for λ = 35.

Finally, we also assess the probability P(r ≤ R) that at
most R HTTP requests are waiting in Web server queues, 
graphically depicted in Fig. 9. In this case, the probability 
decreases as the ratio ρ = λ/μ increases and/or the 
reference number of HTTP requests in the queues, R, 
decreases, such that P(r ≤ 1) = 0.06956791, whilst P(r ≤ 5) 
= 0.18810534, for λ = 35 [HTTP requests/s]. 

Figure 8.  Probability P(r  R) that there are at least R HTTP requests 

waiting in Web server queues, as a function of the ratio λ/μ, given that 

the service rate μ equals 10 [s1], for N = 2 Web servers in the cluster 

Figure 9.  Probability P(r ≤ R) that there are at most R HTTP requests 

waiting in Web server queues, as a function of the ratio λ/μ, given that 

the service rate μ equals 10 [s1], for N = 2 Web servers in the cluster 

B. Transient analysis

Transient (time-dependent) analysis has been done
using the Transient Simulation module. It estimates the 
system’s behavior until a given time point, but it is 
restricted solely to the assessment of basic reward 
measures (e.g. excluding the assessment of the waiting 
time in Web server queues) [15]. The transient analysis 
has been carried out in the case when the Web server 
cluster consists of N = 3 Web servers, given that the 
maximum number of HTTP requests in the system is req 
= 35, the arrival rate λ = 17 [HTTP requests/s], and μ = 10 
[HTTP requests/s]. 

The evolution of the Web server utilization in the 
cluster is presented in Fig. 10. 

Figure 10.  Transient behavior of the Web server utilization 
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The transient analysis of Web server queue length is 
depicted in Fig. 11. 

Figure 11.  Transient behavior of the Web server queue length 

Finally, the transient behavior of the probability P(r = 
0) that there are no HTTP requests waiting in Web server
queues is shown in Fig. 12.

Figure 12.  Transient behavior of the probability P(r = 0) that there are 

no HTTP requests waiting in Web server queues 

VI. CONCLUSION

Since the Internet traffic increases dramatically on a 
daily basis, especially the one being generated by 
e-Customers, e-Commerce Websites are facing the
challenges of high availability and high responsiveness of
their Web servers more than ever before. The results of
this study have shown undoubtedly that by the appliance
of the horizontal scaling approach, i.e. by increasing the
number of Web servers in the first hierarchical tier, and by
organizing them logically into a cluster, significant gains
in terms of performance can be achieved.

Such GSPN-based approach has few limitations, 
including (1) the inability to model HTTP requests with 
variable size (i.e. all tokens are mutually equal, meaning 
that the HTTP requests they present have the same/similar 
size); and (2) the inability to model other, more efficient, 
dynamic schemes of load balancing (i.e. the Round Robin 
algorithm is suitable/efficient for load balancing in a case 
when the incoming HTTP requests do not differ 
significantly from each other vis-à-vis the service 
demands they pose to Web servers, like in this particular 

case). In addition, TimeNET as a software tool also 
exhibits a number of limitations, like (1) the inability to 
convey simulations for bigger number of Web servers in 
the cluster and/or bigger number of HTTP requests in the 
GSPN-based model (i.e. for larger GSPN models), due to 
a state-space explosion and a lack of main memory to 
handle the computation; (2) the limitation to deal with 

finite state-spaces only; (3) the inability to compute other 
relevant performance metrics, like the average time tokens 
need to proceed from one place to another, distant one. 

Future research includes utilization of the class of 
Colored Stochastic Petri Nets (CSPNs) to take into 
account variable-sized HTTP requests, conducting 
performance analyses, and carrying out mutual 
comparisons of the results with those obtained by this 
study. 
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