

N-Tuple Weak Orbits Tending to Infinity for Banach Space Operators

Sonja Mančevska
Faculty of Information and Communication Technologies,
University "St. Kliment Ohridski",
Bitola, Republic of North Macedonia
sonja.manchevska@uklo.edu.mk

Marija Orovčanec
Institute of Mathematics, Faculty of Natural Sciences and Mathematics,
University of Ss. Cyril and Methodius,
Skopje, Republic of North Macedonia
marijaor@iunona.pmf.ukim.edu.mk

Abstract: In this paper we prove some results on the existence of a dense set of pairs in the product of an infinite-dimensional complex Banach space with its dual space such that each pair of this set has an n -tuple weak orbit tending to infinity for specific countable family of mutually commuting bounded linear operators.

Keywords: Banach spaces, weak orbits, *n*-tuple weak orbits, sequences of operators.

1. Introduction

Let X be an infinite-dimensional Banach space over the field of complex numbers \mathbb{C} , B(X) the algebra of all bounded linear operators on X and X^* its dual space, i.e., the space of all bounded linear functionals $x^*: X \to \mathbb{C}$. For the direct product $X \times X^*$ we assume that is endowed with the product topology. As usually, if $x \in X$ and $x^* \in X^*$, we will denote $\langle x, x^* \rangle := x^*(x)$. If $T \in B(X)$, then $\sigma(T)$ and $\sigma(T)$ will denote the spectrum and the spectral radius of the operator T, respectively.

If $T_1, T_2, ..., T_n \in B(X)$ are mutually commuting operators, n -tuple orbit of the vector $x \in X$ (or, the *orbit of x* under the n -tuple $\mathbf{T} = (T_1, T_2, ..., T_n)$) is the set

$$\operatorname{Orb}(\{T_i\}_{i=1}^n, x) = \{T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x : k_i \ge 0; 1 \le i \le n\}.$$
(1.1)

The n —tuple orbit tends to infinity if

$$\lim_{k_i \to \infty} ||T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x|| = \infty$$
, for all $k_i \ge 0, j \ne i, 1 \le i, j \le n$.

For n = 1, the n —tuple orbit (1.1) reduces to a simple sequence of form

$$Orb(T, x) = \{T^n x : n = 0, 1, 2, ...\},\$$

usually referred as *single orbit* (or, simply *orbit*) of the vector $x \in X$ under the operator T.

The n –tuple weak orbit of the pair $(x, x^*) \in X \times X^*$ (or, the weak orbit of the pair (x, x^*) under the n –tuple $\mathbf{T} = (T_1, T_2, ..., T_n)$) is the set

$$\operatorname{Orb}(\{T_i\}_{i=1}^n, x, x^*) = \{ \langle T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x, x^* \rangle : k_i \ge 0; 1 \le i \le n \}.$$
(1.2)

The n —tuple weak orbit *tends to infinity* if

$$\lim\nolimits_{k_{i}\rightarrow\infty}\left|\langle T_{1}^{k_{1}}T_{2}^{k_{2}}\dots T_{n}^{k_{n}}x,x^{*}\rangle\right|=\ \infty,\ \text{for all}\ k_{j}\geq0, j\neq i,\ 1\leq i,j\ \leq n.$$

For n = 1, the n —tuple weak orbit (1.2) reduces to a sequence of form

Orb
$$(T, x, x^*) = \{ \langle T^n x, x^* \rangle : n = 0, 1, 2, \dots \},$$

usually referred as weak orbit of the pair $(x, x^*) \in X \times X^*$ under the operator T.

In [5] we gave only a brief survey without proofs of some results on the existence of a dense set of pairs $(x, x^*) \in X \times X^*$ each having a single weak orbit tending to infinity under every operator of a specific sequence of operators in B(X). In this paper we are going to give an appropriate generalization for n—tuple weak orbits only of the results in [5] that do not involve any requirements upon specific subsets of the spectra of the operators.

2. Preliminary Results

Lemma 2.1. ([2, Lemma V.37.15]) Let $\varepsilon > 0$ and $(a_n)_{n \ge 1}$ be a sequence of positive numbers satisfying $\sum_{n \ge 1} a_n < \varepsilon$. Then there is a sequence of positive numbers $(b_n)_{n \ge 1}$ such that $b_n \to \infty$ as $n \to \infty$ and $\sum_{n \ge 1} a_n b_n < \varepsilon$.

Theorem 2.2. ([2, Theorem V.39.5]) Let X and Y be Banach spaces and $(T_n)_{n\geq 1}$ be a sequence of operators in B(X,Y). Let $(a_n)_{n\geq 1}$ be sequence of positive numbers with $\sum_{n\geq 1} a_n^{1/2} < \infty$. Then there are $x \in X$ and $y^* \in Y^*$ such that

$$|\langle T_n x, y^* \rangle| \ge a_n ||T_n||, \text{ for all } n \ge 1.$$

Moreover, given balls $B \subset X$ and $B^* \subset Y^*$ of radii greater than $\sum_{n\geq 1} a_n^{1/2} < \infty$, then it is possible to find $x \in B$ and $y^* \in B^*$ with this property.

Corollary 2.3. ([2, Corollary V.39.6]) Let X and Y be Banach spaces and $(T_n)_{n\geq 1}$ be a sequence of operators in B(X,Y) satisfying $\sum_{n=1}^{\infty} ||T_n||^{-1/2} < \infty$. Then there exist $x \in X$ and $y^* \in Y^*$ such that $|\langle T_n x, y^* \rangle| \to \infty$. Moreover, the set of such pairs (x, y^*) is dense in $X \times Y^*$.

3. Main Results for N-Tuple Weak Orbits

Let $F = \{1, 2, ..., N\}$ for some $N \in \mathbb{N}$, $N \ge 2$, or $F = \mathbb{N}$.

Theorem 3.1. If X is a Banach space, $\{T_i : i \in F\} \subset B(X)$ and $\{(a_{i,j})_{j\geq 1} : i \in F\}$ is a family of sequences of positive numbers such that $\sum_{i\in F, j\geq 1} a_{i,j}^{1/2} < \infty$, then for every open ball $B \subset X$ and every open ball $B^* \subset X^*$ with radii strictly larger then $\sum_{i\in F, j\geq 1} a_{i,j}^{1/2}$ there are $x \in B$ and $x^* \in B^*$ such that

$$\left|\left\langle T_{i}^{k}x,x^{*}\right\rangle \right|\geq a_{i,k}\left\|T_{i}^{k}\right\|, for\ all\ i\in F\ and\ k\in\mathbb{N}.$$

Proof. Let $B \subset X$ and $B^* \subset X^*$ be open balls, each with radius strictly larger than $\sum_{i \in F, j \ge 1} a_{i,j}^{1/2}$ and put $T_{i,k} := T_i^k$, $i \in F$, $k \in \mathbb{N}$. Let $f: F \times \mathbb{N} \to \mathbb{N}$ be the bijective mapping defined with:

$$f(i,j) = \begin{cases} i + N(j-1), & \text{if } F = \{1,2,\dots,N\}, \\ \frac{(i+j-2)(i+j-1)}{2}, & \text{if } F = \mathbb{N}, \end{cases}$$

and $g: \mathbb{N} \to F \times \mathbb{N}$ denote its inverse. If $(\alpha_n)_{n \ge 1}$ is a sequence of positive numbers and $(S_n)_{n \ge 1}$ is a sequence of operators defined with

$$\alpha_n = a_{g(n)}$$
 and $S_n = T_{g(n)}$, for all $n \in \mathbb{N}$,

then $\sum_{n\geq 1} \alpha_n^{1/2} = \sum_{i\in F, j\geq 1} a_{i,j}^{1/2} < \infty$ and hence (by Theorem 2.2, applied on $(\alpha_n)_{n\geq 1}$, $(S_n)_{n\geq 1}$ and X=Y) there are $x\in B$ and $x^*\in B^*$ such that

$$|\langle S_n x, x^* \rangle| \ge \alpha_n ||S_n||$$
, for all $n \ge 1$.

Given $(i,k) \in F \times \mathbb{N}$ and n = f(i,k), these inequalities, along with the definition of $(\alpha_n)_{n \geq 1}$ and $(S_n)_{n \geq 1}$, will give

$$|\langle T_i^k x, x^* \rangle| = |\langle T_{i,k} x, x^* \rangle| = |\langle T_{g(n)} x, x^* \rangle| \ge a_{g(n)} ||T_{g(n)}|| = a_{i,k} ||T_i^k||,$$

which completes the proof.

Theorem 3.2. If X is Banach space and $\{T_i : i \in F\} \subset B(X)$ is a family of operators such that $\sum_{k=1}^{\infty} \|T_i^k\|^{-1/2} < \infty$, for all $i \in F$, then there is a dense set $D \subset X \times X^*$ such that the weak orbit $\operatorname{Orb}(T_i, x, x^*)$ tends to infinity for every pair $(x, x^*) \in D$ and every $i \in F$. If, in addition, $\{T_i : i \in F\}$ is a family of mutually commuting operators such that the sequences $(T_i^k - T_j^k)_{k \ge 1}$ are norm bounded for all $i, j \in F$, then for every $n \in F$, every $1 < m \le n$ and every pair $(x, x^*) \in D$, the m-tuple weak orbit $\operatorname{Orb}\left(\{T_{i_j}\}_{j=1}^m, x, x^*\right)$ tends to infinity for all $1 \le i_1 < i_2 < \dots < i_m \le n$.

Proof. To prove the first assertion let $\varepsilon > 0$, $B \subset X$ and $B^* \subset X^*$ be open balls each with a radius ε . For $i \in F$, let $\varepsilon_i > 0$ be such that

$$\varepsilon_i \left(\sum_{k=1}^{\infty} \frac{1}{\left\| T_i^k \right\|^{1/2}} \right) < \frac{\varepsilon}{2^{i+1}},$$

and, by Lemma 2.1, let $(b_{i,k})_{k\geq 1}$ be the sequence of positive numbers such that $b_{i,k}\to\infty$ as $k\to\infty$ and

$$\sum_{k=1}^{\infty} \frac{\varepsilon_i b_{i,k}}{\left\| T_i^k \right\|^{1/2}} < \frac{\varepsilon}{2^{i+1}}.$$
(3.1)

For $(i, k) \in F \times \mathbb{N}$, put $a_{i,k} = \varepsilon_i^2 b_{i,k}^2 ||T_i^k||^{-1}$. Then by (3.1) we have

$$\sum_{i \in F, k \ge 1} a_{i,k}^{1/2} = \sum_{i \in F} \sum_{k=1}^{\infty} \frac{\varepsilon_i b_{i,k}}{\|T_i^k\|^{1/2}} < \sum_{i \in F} \frac{\varepsilon}{2^{i+1}} < \frac{\varepsilon}{2}.$$

Hence, by Theorem 3.1, there are $x \in B$ and $x^* \in B^*$ such that

$$|\langle T_i^k x, x^* \rangle| \ge a_{i,k} ||T_i^k|| = \varepsilon_i^2 b_{i,k}^2 ||T_i^k||^{-1} ||T_i^k|| = \varepsilon_i^2 b_{i,k}^2$$
, for all $i \in F$ and $k \ge 1$.

Letting $k \to \infty$, we obtain

$$\lim_{k \to \infty} \left| \langle T_i^k x, x^* \rangle \right| = \infty, \text{ for all } i \in F.$$
(3.2)

If, in addition, $\{T_i : i \in F\}$ is a family of mutually commuting operators such that the sequence $(T_i^k - T_j^k)_{k \ge 1}$ is norm bounded for all $i, j \in F$, let $M_{i,j} > 0$ be such that $\|T_i^k - T_j^k\| \le M_{i,j}$, for all $k \ge 0$, and let $(x, x^*) \in X \times X^*$ be a pair satisfying (3.2). We continue by induction.

Let m = 2 and $1 \le i_1 < i_2 \le n$. Then

$$\begin{split} \left| \langle T_{i_{1}}^{k_{1}+k_{2}}x,x^{*} \rangle \right| &\leq \left| \langle T_{i_{1}}^{k_{1}+k_{2}}x - T_{i_{1}}^{k_{1}}T_{i_{2}}^{k_{2}}x,x^{*} \rangle \right| + \left| \langle T_{i_{1}}^{k_{1}}T_{i_{2}}^{k_{2}}x,x^{*} \rangle \right| \\ &= \left| \langle T_{i_{1}}^{k_{1}} \left(T_{i_{1}}^{k_{2}} - T_{i_{2}}^{k_{2}} \right) x,x^{*} \rangle \right| + \left| \langle T_{i_{1}}^{k_{1}}T_{i_{2}}^{k_{2}}x,x^{*} \rangle \right| \\ &\leq \left\| T_{i_{1}}^{k_{1}} \right\| \cdot \left\| T_{i_{1}}^{k_{2}} - T_{i_{2}}^{k_{2}} \right\| \cdot \left\| x \right\| \cdot \left\| x^{*} \right\| + \left| \langle T_{i_{1}}^{k_{1}}T_{i_{2}}^{k_{2}}x,x^{*} \rangle \right| \\ &\leq \left\| T_{i_{1}} \right\|^{k_{1}} \cdot M_{i_{1},i_{2}} \cdot \left\| x \right\| \cdot \left\| x^{*} \right\| + \left| \langle T_{i_{1}}^{k_{1}}T_{i_{2}}^{k_{2}}x,x^{*} \rangle \right|. \end{split}$$

Since $|\langle T_{i_1}^n x, x^* \rangle| \to \infty$ as $n \to \infty$ (hence $|\langle T_{i_1}^{k_1 + k_2} x, x^* \rangle| \to \infty$ as $k_2 \to \infty$, for all $k_1 \ge 0$), the above inequalities imply that

$$\left| \langle T_{i_1}^{k_1} T_{i_2}^{k_2} x, x^* \rangle \right| \to \infty$$
, as $k_2 \to \infty$, for all $k_1 \ge 0$.

Similarly,

$$\begin{split} \left| \langle T_{i_{2}}^{k_{1}+k_{2}}x,x^{*} \rangle \right| &\leq \left| \langle T_{i_{2}}^{k_{1}+k_{2}}x - T_{i_{1}}^{k_{1}}T_{i_{2}}^{k_{2}}x,x^{*} \rangle \right| + \left| \langle T_{i_{1}}^{k_{1}}T_{i_{2}}^{k_{2}}x,x^{*} \rangle \right| \\ &= \left| \langle T_{i_{2}}^{k_{2}} \left(T_{i_{2}}^{k_{1}} - T_{i_{1}}^{k_{1}} \right) x,x^{*} \rangle \right| + \left| \langle T_{i_{1}}^{k_{1}}T_{i_{2}}^{k_{2}}x,x^{*} \rangle \right| \\ &\leq \left\| T_{i_{2}}^{k_{2}} \right\| \cdot \left\| T_{i_{2}}^{k_{1}} - T_{i_{1}}^{k_{1}} \right\| \cdot \left\| x \right\| \cdot \left\| x^{*} \right\| + \left| \langle T_{i_{1}}^{k_{1}}T_{i_{2}}^{k_{2}}x,x^{*} \rangle \right| \\ &\leq \left\| T_{i_{2}} \right\|^{k_{2}} \cdot M_{i_{2},i_{1}} \cdot \left\| x \right\| \cdot \left\| x^{*} \right\| + \left| \langle T_{i_{1}}^{k_{1}}T_{i_{2}}^{k_{2}}x,x^{*} \rangle \right|, \end{split}$$

imply that

$$\left| \left\langle T_{i_1}^{k_1} T_{i_2}^{k_2} x, x^* \right\rangle \right| \to \infty, \text{ as } k_1 \to \infty, \text{ for all } k_2 \ge 0.$$

To complete the proof, it is enough to show that the claim is true for m=n, under an inductive assumption that the (n-1) -tuple weak orbit $\mathrm{Orb}\left(\{T_{i_j}\}_{j=1}^{n-1},x,x^*\right)$ tends to infinity for all $1\leq i_1< i_2< \cdots < i_{n-1}\leq n$. For fixed $i\in\{1,2,\ldots,n\}$ and $k_1,\ k_2,\ldots,\ k_n\geq 0$ and arbitrary $j\in\{1,2,\ldots,n\}\setminus\{i\}$, we have

$$\begin{split} \left| \langle T_1^{k_1} \dots T_{i-1}^{k_{l-1}} T_j^{k_l} T_{i+1}^{k_{l+1}} \dots T_n^{k_n} x, x^* \rangle \right| \\ & \leq \left| \langle T_1^{k_1} \dots T_{i-1}^{k_{l-1}} T_j^{k_l} T_{i+1}^{k_{l+1}} \dots T_n^{k_n} x - T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x, x^* \rangle \right| \\ & + \left| \langle T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x, x^* \rangle \right| \\ & = \left| \langle T_1^{k_1} \dots T_{i-1}^{k_{l-1}} T_{i+1}^{k_{l+1}} \dots T_n^{k_n} \left(T_j^{k_l} - T_i^{k_l} \right) x, x^* \rangle \right| + \left| \langle T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x, x^* \rangle \right| \\ & \leq \left\| T_1^{k_1} \dots T_{i-1}^{k_{l-1}} T_{i+1}^{k_{l+1}} \dots T_n^{k_n} \right\| \cdot \left\| T_j^{k_i} - T_i^{k_i} \right\| \cdot \left\| x \right\| \cdot \left\| x^* \right\| \\ & + \left| \langle T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x, x^* \rangle \right| \\ & \leq \left(\prod_{p=1}^n \left\| T_p \right\|^{k_p} \right) \cdot M_{j,i} \cdot \left\| x \right\| \cdot \left\| x^* \right\| + \left| \langle T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x, x^* \rangle \right|. \end{split}$$

Since $j \in \{1, 2, ..., n\} \setminus \{i\}$

$$\langle T_1^{k_1} \dots T_{i-1}^{k_{i-1}} T_i^{k_i} T_{i+1}^{k_{i+1}} \dots T_n^{k_n} x, x^* \rangle \in Orb(\{T_1, \dots, T_{i-1}, T_{i+1}, \dots, T_n\}, x, x^*),$$

and since, by the inductive assumption, this (n-1) -tuple weak orbit tents to infinity, we have

$$\left| \langle T_1^{k_1} \dots T_{i-1}^{k_{i-1}} T_j^{k_i} T_{i+1}^{k_{i+1}} \dots T_n^{k_n} x, x^* \rangle \right| \to \infty, \text{ as } k_i \to \infty, \text{ for all } k_j \ge 0, j \ne i.$$

This, together with the above inequalities implies that

$$|\langle T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} x, x^* \rangle| \to \infty$$
, as $k_i \to \infty$, for all $k_i \ge 0, j \ne i$.

which completes the proof.

Corollary 3.3. If X is Banach space and $\{T_i: i \in F\} \subset B(X)$ is a family of operators such that $r(T_i) > 1$ for all $i \in F$, then there is a dense set $D \subset X \times X^*$ such that the weak orbit $\operatorname{Orb}(T_i, x, x^*)$ tends to infinity for every pair $(x, x^*) \in D$ and every $i \in F$. If, in addition, $\{T_i: i \in F\}$ is a family of mutually commuting operators such that the sequences $(T_i^k - T_j^k)_{k \geq 1}$ are norm bounded for all $i, j \in F$, then for every $n \in F$, every $1 < m \leq n$ and every pair $(x, x^*) \in D$, the m-tuple weak orbit $\operatorname{Orb}\left(\{T_{i_j}\}_{j=1}^m, x, x^*\right)$ tends to infinity for all $1 \leq i_1 < i_2 < \cdots < i_m \leq n$.

Proof. By Theorem 3.2 it is enough to show that an operator $T \in B(X)$ with spectral radius r(T) > 1 satisfies: $\sum_{n=1}^{\infty} ||T^n||^{-1/2} < \infty$. If r(T) > 1, then there is $\lambda \in \sigma(T)$ such that $|\lambda| > 1$. Clearly $|\lambda|^{1/2} > 1$ and hence the series $\sum_{n=1}^{\infty} |\lambda|^{-n/2}$ converges. On the other hand, by the Spectral Mapping Theorem, $\lambda^n \in \sigma(T^n)$ for all $n \in \mathbb{N}$. Hence $|\lambda|^n \le r(T^n) \le ||T^n||$ and $\sum_{n=1}^{\infty} ||T^n||^{-1/2} \le \sum_{n=1}^{\infty} |\lambda|^{-n/2} < \infty$.

4. Few Remarks on N-Tuple Orbits Tending to Infinity

The inequalities of form

$$\left| \langle T_1^{k_1} \dots T_n^{k_n} x, x^* \rangle \right| \leq \left\| T_1^{k_1} \dots T_n^{k_n} x \right\| \cdot \|x^*\|, \, (x, x^*) \in X \times X^*, \, k_i \geq 0, \, 1 \leq i \, \leq n,$$

clearly imply that the n -tuple orbit $Orb(\{T_i\}_{i=1}^n, x)$ tends to infinity whenever there is $x^* \in X^*$ such that the n -tuple weak orbit $Orb(\{T_i\}_{i=1}^n, x, x^*)$ tends to infinity. Hence, in the light of the results from the previous section, we can state the following alternative results for n -tuple orbits tending to infinity to a part of the results in [7].

Theorem 4.1. If X is Banach space and $\{T_i : i \in F\} \subset B(X)$ is a family of operators such that $\sum_{k=1}^{\infty} ||T_i^k||^{-1/2} < \infty$, for all $i \in F$, then there is a dense set $D \subset X$ such that the orbit

Orb (T_i, x) tends to infinity for every $x \in D$ and every $i \in F$. If, in addition, $\{T_i : i \in F\} \subset B(X)$ is a family of mutually commuting operators such that the sequences $(T_i^k - T_j^k)_{k \ge 1}$ are norm bounded for all $i, j \in F$, then for every $n \in F$, every $1 < m \le n$ and every $x \in D$, the m-tuple orbit Orb $(\{T_i, \}_{j=1}^m, x)$ tends to infinity for all $1 \le i_1 < i_2 < \cdots < i_m \le n$.

Corollary 4.2. If X is Banach space and $\{T_i : i \in F\} \subset B(X)$ is a family of operators such that $r(T_i) > 1$ for all $i \in F$, then there is a dense set $D \subset X$ such that the orbit $\operatorname{Orb}(T_i, x)$ tends to infinity for every $x \in D$ and every $i \in F$. If, in addition, $\{T_i : i \in F\} \subset B(X)$ is a family of mutually commuting operators such that the sequences $(T_i^k - T_j^k)_{k \ge 1}$ are norm bounded for all $i, j \in F$, then for every $n \in F$, every $1 < m \le n$ and every $x \in D$ the m-tuple orbit $\operatorname{Orb}(\{T_{i_j}\}_{j=1}^m, x)$ tends to infinity for all $1 \le i_1 < i_2 < \dots < i_m \le n$.

References:

- [1] S. Mančevska, M. Orovčanec, "Orbits tending to infinity under sequences of operators on Banach spaces II", Math. Maced., Vol. 5 (2007), 57–61.
- [2] V. Müller, "Spectral theory of linear operators and spectral systems in Banach algebras", (2nd ed.), Operator Theory: Advances and Applications Vol. 139, Birkhäuser Verlag AG, Basel Boston Berlin, 2007.
- [3] V. Müller, J. Vršovský, "Orbits of linear operators tending to infinity", Rocky Mountain J. Math., Vol. 39 No.1 (2009), 219–230.
- [4] S. Mančevska, M. Orovčanec, "Orbits tending to infinity under sequences of operators on Banach spaces", International Journal of Pure and Applied Mathematics 47(2) (2008), 175–183.
- [5] S. Mančevska, M. Orovčanec, "Few results on weak orbits under sequences of operators", Proceedings of the Fourth International Scientific Conference FMNS2011, Vol.2, (2011) p.33-40.
- [6] A. Tajmouati, Y. Zahouan, "Orbit of tuple of operators tending to infinity", International Journal of Pure and Applied Mathematics Vol. 110, No.4 (2016), 651–656.
- [7] S. Mančevska, M. Orovčanec, "N-Tuple orbits tending to infinity", Proceedings of the CODEMA 2020, (2020) p.23-31.