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Abstract

Riboswitch, a part of regulatory mRNA (50–250nt in length), has two main classes:

aptamer and expression platform. One of the main challenges raised during the classifica-

tion of riboswitch is imbalanced data. That is a circumstance in which the records of a

sequences of one group are very small compared to the others. Such circumstances lead

classifier to ignore minority group and emphasize on majority ones, which results in a

skewed classification. We considered sixteen riboswitch families, to be in accord with

recent riboswitch classification work, that contain imbalanced sequences. The sequences

were split into training and test set using a newly developed pipeline. From 5460 k-mers

(k value 1 to 6) produced, 156 features were calculated based on CfsSubsetEval and

BestFirst function found in WEKA 3.8. Statistically tested result was significantly differ-

ence between balanced and imbalanced sequences (p < 0.05). Besides, each algorithm

also showed a significant difference in sensitivity, specificity, accuracy, and macro F-

score when used in both groups (p < 0.05). Several k-mers clustered from heat map were

discovered to have biological functions and motifs at the different positions like interior

loops, terminal loops and helices. They were validated to have a biological function and

some are riboswitch motifs. The analysis has discovered the importance of solving the

challenges of majority bias analysis and overfitting. Presented results were generalized

evaluation of both balanced and imbalanced models, which implies their ability of classify-

ing, to classify novel riboswitches. The Python source code is available at https://github.

com/Seasonsling/riboswitch.

Author summary

Machine learning application has been used in many ways in bioinformatics and

computational biology. Its use in riboswitch classification is still limited. Existing

attempts showed challenges due to imbalanced sequences. Algorithms can classify

sequences with majority and minority groups, but they tend to ignore minority group
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and emphasize on majority class, consequential return a skewed classification. We used

a new pipeline including SMOTE for balancing sequences that showed better-classified

riboswitch as well as improved performance of algorithms selected. Statistically signifi-

cant difference observed between balanced and imbalanced in sensitivity, specificity,

accuracy and F-score, this proved balanced sequences better for classification of ribos-

witch. Biological functions and motif search of k-mers in riboswitch families revealed

their presence in interior loops, terminal loops and helices. Some of the k-mers were

reported to be riboswitch motifs of aptamer domains and critical for metabolite binding.

The pipeline can be used in machine learning and deep learning study in other domains

of bioinformatics and computational biology suffering from imbalanced sequences.

Finally, scientific community can use python source code, the work done and flow to

develop packages.

This is a PLOS Computational Biology Methods paper.

Introduction

Riboswitches, primarily discovered in bacteria [1], are parts of regulatory noncoding mRNA

[2]. Riboswitches are predominantly present in the 5’ untranslated region [3,4]. They have

complex folded structure [5,6]. They act as a switch to transform the transcription or transla-

tion of the genes. In transcription, they turn a downstream gene ‘off’ or ‘on’ [7] in changing

concentration of specific metabolites or ligands [8] and allow microbes to quickly react to

change degrees of metabolites [7]. A high-throughput platform showed how RNA makes

structural transitions [9] kinetically compete during transcription in a new mechanism for

riboswitch.

A riboswitch (50–250 nt in length) has two main classes aptamer and an expression plat-

form [10]. The aptamer region is a highly conserved domain, which is a site for binding of

ligands (metabolites) and the latter one alters conformation on the binding of metabolite and

hence regulates the expression of related genes [5,6]. Recently, almost over twenty diverse clas-

ses of riboswitches have been found in bacteria, archaea [11,12] and eukaryote. The majority

of the riboswitch classes are in bacteria [12,13]. Thiamine pyrophosphate (TPP) is the only

eukaryotic riboswitch. It is detected in Arabidopsis thaliana. TPP was also found in some fungi

[13] for instance Neurospora crassa, in algae [14,15].

The last two decades have revealed incredible advancement in big and complex omics data

due to emerged novel high-throughput experimental technologies such as next-generation

sequencing [16,17]. Numerous bioinformatics databases are available to gather data for ribos-

witches analyses and assemble the information regarding diverse functionality of RNA mole-

cules [18], including GenBank, National Center for Biotechnology Information (NCBI),

Rfam [19], Protein Data Bank (PDB), RiboD [20] and European Bioinformatics Institute

(EMBL-EBI).

Many efforts have been made to develop suitable bioinformatics tools to predict the pres-

ence of riboswitches in ribonucleic acid sequences [18]. The most commonly used computa-

tion tools for the analysis of riboswitches are: RiboD [20], Riboswitch finder [21], RibEx [22],

RiboSW [23], mFold [24] and RegRNA [18]. These available bioinformatics tools use Covari-

ance Model (CM), Support Vector Machine (SVM) and Hidden Markov Model (HMM) algo-

rithm. Most research exists mainly depending on the principal of multiple sequence alignment
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to investigate conserved sequences in already reported riboswitch. The attempt was to find out

the conserved sequence of previously reported riboswitches in a targeted manner. Most

reported studies depend on multiple sequence and thus limited for the classes of riboswitches

in a family [21–24]. However, research conducted on frequency-dependent revealed its impor-

tance in the classification of riboswitch [25,26]. Frequency-dependent classification uses k-

mers counts. K-mers counts have many application like, building de Bruijn graphs [27] in case

of de novo assembly from very big number of short reads, generated from next-generation

sequencing (NGS), used in case of multiple sequence alignment [28], and repeat detection

[29].

A tremendous amount of data are generated every day that create the demand for learning

algorithms that can classify, predict and analyze data more accurately [30]. There are two clas-

sification categories: classification of binary format [31] and multi-class classification [32,33].

The concept of imbalanced sequences is defined as follows. Each family in classes of ribos-

witch with majority groups has more than two thousand class and minority group below thou-

sands, which is considered as an imbalanced sequence. Whereas, the imbalanced group used

and treated with Synthetic Minority Over-Sampling Technique (SMOTE) and thereafter it is

called a balanced sequences. The classification with imbalanced data gives favors for a sample

with the majority class [30]. Classifiers trained by balanced sequences are defined as balanced

classifiers. Imbalanced data occur as a circumstance where the records of a sequences of one

class are very little in relation to the other classes’ sequences. This leads classifier algorithms to

ignore minority groups and emphasize on majority class, which can result in skewed accuracy

of the classifier. The value of the accuracy of the classifier might be high, but minority class

misclassified. Several findings have been done for riboswitch classification [25,26] based on

imbalanced data. However, data resampling can be a solution to handle the class imbalance

problems [30]. Synthetic Minority Over-Sampling Technique (SMOTE) has been discovered

in 2002, which is a sampling-based algorithm. Synthetic Minority Over-Sampling Technique

[34] balances the class distribution of imbalanced sequences through an incrementing

approach on some virtual samples.

To address the needs for riboswitch prediction, nucleotide frequency counts are consid-

ered. SMOTE was used for resampling. Different machine learning algorithms are used for

evaluation such as: Random forest (RF) randomizes the variables (columns) and data (rows),

generating thousands of classification trees, and then summarizing the results of the classifi-

cation tree [35]. Gradient boosting (GB) is a boosting algorithm, which belongs to ensemble

learning as well as random forest and proved to have great performance in imbalance prob-

lem. It builds the model in a stage-wise fashion, and generalizes them by allowing optimiza-

tion of an arbitrary differentiable loss function. Support vector machine (SVM) is a simple

and efficient method for solving the quadratic programming problem through computing

the maximum marginal hyper-plane. In SVM, the kernel function implicitly defines the fea-

ture space for linear partitioning, which means the choice of kernel function is the largest

variable of SVM [35]. K-Nearest Neighbors (KNN) is classifier offers numerous choices to

speed up the undertaking to locate nearest neighbors, Naïve Bayes (NB) classifier based on

Bayes’ theorem [25]. This is a probability-based model in Bayesian networks. Multilayer per-

ceptron (MLP) is a commonly used machine learning algorithm. It is a deep, artificial neural

network. A neural network is comprised of layers of nodes which activate at various levels

depending on the previous layer’s nodes [25]. The performances of each algorithm on classi-

fication were derived from the confusion matrix, which reveals the number of matches cor-

rectly and mismatched instances of riboswitches. Specificity, sensitivity, accuracy, and

macro F-score were calculated. That parameters are the main performance evaluation crite-

ria for machine learning algorithms [35–38].
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Results

Sequences preprocessing and feature selection

Riboswitch families considered for this analysis and their corresponding details were presented

and analyzed in Fig 1 and features where clustered in Fig 2 (see detail in S1 Fig). Looking into

instances in riboswitch, there were differences in representation between families range in dis-

tribution from Cobalamin riboswitch (4,826 sequence classes) to PreQ1-II (39 sequence clas-

ses). Out of 16 riboswitch class, Cobalamin riboswitch, TPP riboswitch (THI element), and

Glycine riboswitch contributed for 68% and the remaining 13 riboswitch family has 32%

instances. The performances of algorithms and methods were computed and evaluated based

on training and test set (details in the methodological approach part). We produced 5460 k-

mers (1�k�6) by R script and exported a matrix containing all riboswitch sequences and their

corresponding k-mers value. A Sequences preprocessing and feature selection afterward, 156

features were calculated based on the Correlation-based Feature Subset Selection algorithm

(CfsSubsetEval) and Best First Search (BestFirst) in WEKA 3.8 [39] (Fig 3 and detail in S2 Fig),

which was consistent with previous research [26].

Imbalanced class on classification performance

After feature selection, sequences containing 156 k-mers values were split into 70% training

dataset and 30% test dataset. Improved cross-validation method in training dataset was used

to validate both imbalanced models and balanced models, while the remaining test set was

applied to test generalizations of those models. All the following results are results based on

the test set, which can demonstrate their ability to classify novel sequences. Classifiers on

minority class resulted in F-score value from 0.50 (NB) to 0.94 (MLP), while on majority class,

the range is from 0.91 to 1.00, as indicated in Table 1 and Fig 4. Riboswitch families considered

Fig 1. The workflow used to analyze imbalanced and balanced sequences. It was used to compare the computational performance of machine

learning algorithms for classification.

https://doi.org/10.1371/journal.pcbi.1007760.g001
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Fig 2. Heat-map in this figure represented as row-normalized k-mer counting distribution. Rows correspond to the k-mers,

and columns revealed 16 families of riboswitch. The clustering heatmap depicts feature clustering, clustered features were essential

for classification in that family. Red means a high relatively counting number while blue means lower (see details in S1 Fig).

https://doi.org/10.1371/journal.pcbi.1007760.g002
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for classification were present in S1 Table. The average performance of each classifier is com-

puted using mean and standard deviation for parameters: accuracy, specificity, sensitivity and

macro F-score.

The comparative analysis of six algorithms has revealed that MLP performs best, while NB

performed the poorest results (S2 Table). RF00174, RF00059, RF00504, RF00522 classified bet-

ter than others with minority classes like RF01054, RF00634, RF00380 (Table 1). F-scores of

Fig 3. Heat-map showed features correlation. It depicts the diagonal white line represented their correlation factor equals to one. Blue means a

positive correlation, while red means a negative correlation (see details in S2 Fig).

https://doi.org/10.1371/journal.pcbi.1007760.g003
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MLP and RF for the majority group (RF00174) were 0.997 and 0.996, respectively. In the

minority group, classifiers with high accuracy had F-score up to 0.50 in the case of NB. The

computed minimum value in overall NB analysis in RF01054, RF00634, and RF00521 were

0.50, 0.38, and 0.24, respectively. Accuracy of all algorithms across all riboswitch families

showed values greater than 0.97. In confusion matrix, predicted family and true family exhib-

ited performance of classifiers and riboswitch classification (Fig 5).

SMOTE balancing on classifiers performance

The overall analysis computed for frequency counts of all families had discovered improved

performances of classifiers (S2 Table, Table 2 and Fig 4). RF00059 and RF00174 results showed

F-score between 0.93 and 1.00. In the case of NB and KNN, results of the F-score indicated

their poorer performance with a value less than 0.84. Performance evaluations have revealed

that KNN, NB, SVM, MLP, RF and GB can be used for classification of riboswitch (Fig 6).

As presented, Random Forest and MLP exhibited the consistently higher accuracy and F-

score values compared to NB, GB, SVM and KNN. Fig 4 and Table 2 have shown that SMOTE

improves riboswitch classification and algorithm performances.

The overall accuracy of classifiers trained with SMOTE analyzed sequences (balanced

sequences) showed consistent and better results than with imbalanced sequences (S2 Table

and Tables 1 and 2). The specificity of NB, MLP, RF, GB, SVM and KNN was better in the bal-

anced classifiers than imbalanced sequences ones. Calculated sensitivity results were slightly

better in balanced instances. Surprisingly, evidence discovered in that F-score value in all the

models showed that balanced training sequences could improve the classification of ribos-

witches. When tested by independent test sequences, balanced sequences trained classifiers

increased not only classification accuracy, but also algorithms performances than control

groups. Balanced sequences increased not only classification accuracy but also algorithms

Table 1. Accuracy, sensitivity, specificity and F-score. This parameters were used for Naïve Bayes(NB), Multilayer Perceptron(MLP), Random Forest(RF), Gradient

Boosting(GB), Support Vector Machine(SVM) and K-Nearest Neighbors(KNN) algorithms evaluation when applied on the imbalanced sequences. The color trend of F-

score from blue to red indicates performance from the best to the poorest. Accuracy, sensitivity, specificity, and F-score are represented in the table as Acc, Sen, Spec, and

F-sco, respectively.

NB MLP RF GB SVM KNN

Family Acc Sen Spec F-sco Acc Sen Spec F-sco Acc Sen Spec F-sco Acc Sen Spec F-sco Acc Sen Spec F-sco Acc Sen Spec F-sco

RF00521 0.95 0.91 0.95 0.24 1.00 0.97 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.82 1.00 0.89 1.00 0.97 1.00 0.99 1.00 0.94 1.00 0.94

RF00522 1.00 0.66 1.00 0.69 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.83 1.00 0.89 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.97

RF00059 0.98 0.94 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.98 0.98 0.98 0.96

RF00174 0.95 0.87 0.99 0.91 1.00 0.99 1.00 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.98 0.97 0.94 0.98 0.94

RF00504 0.97 0.83 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.99 0.98 0.93 1.00 1.00 1.00 1.00 0.99 0.95 0.99 0.96

RF01051 0.98 0.69 1.00 0.81 1.00 0.99 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.94 1.00 0.96 1.00 0.99 1.00 0.98 0.99 0.95 1.00 0.95

RF01057 0.98 0.88 0.98 0.53 1.00 0.98 1.00 0.96 1.00 0.98 1.00 0.99 1.00 0.92 1.00 0.96 1.00 0.96 1.00 0.97 1.00 0.84 1.00 0.87

RF00050 0.99 0.87 1.00 0.92 1.00 0.97 1.00 0.98 1.00 0.98 1.00 0.98 0.99 0.93 1.00 0.96 1.00 0.96 1.00 0.98 0.99 0.94 0.99 0.92

RF00162 0.98 0.74 1.00 0.84 1.00 0.99 1.00 0.99 1.00 0.98 1.00 0.98 0.99 0.95 1.00 0.97 1.00 0.98 1.00 0.99 0.99 0.94 0.99 0.91

RF00234 0.99 0.89 0.99 0.79 1.00 0.99 1.00 0.99 1.00 0.96 1.00 0.98 1.00 0.97 1.00 0.98 1.00 0.84 1.00 0.91 0.99 0.59 1.00 0.70

RF00634 0.99 0.89 1.00 0.38 1.00 0.98 1.00 0.98 0.99 0.95 0.99 0.98 0.98 0.80 0.99 0.87 0.99 0.97 0.99 0.97 0.98 0.90 0.99 0.84

RF01055 0.99 0.85 1.00 0.81 1.00 0.96 1.00 0.96 1.00 0.87 1.00 0.93 0.99 0.73 1.00 0.83 1.00 0.93 1.00 0.95 0.99 0.61 1.00 0.74

RF00380 0.97 0.97 0.97 0.62 0.99 0.97 0.99 0.96 0.99 0.86 0.99 0.92 0.99 0.57 0.99 0.84 0.99 0.92 0.99 0.95 0.98 0.83 0.99 0.82

RF00167 0.98 0.66 0.98 0.78 0.99 0.93 1.00 0.91 0.99 0.91 1.00 0.91 0.99 0.87 1.00 0.88 0.99 0.91 1.00 0.92 0.98 0.86 1.00 0.84

RF00168 0.97 0.83 0.98 0.59 0.99 0.73 1.00 0.77 0.99 0.77 1.00 0.78 0.99 0.60 1.00 0.68 0.99 0.80 1.00 0.80 0.99 0.57 1.00 0.66

RF01054 1.00 0.56 1.00 0.50 1.00 0.89 1.00 0.94 1.00 0.56 1.00 0.71 1.00 0.89 1.00 0.80 1.00 0.89 1.00 0.94 1.00 0.33 1.00 0.50

https://doi.org/10.1371/journal.pcbi.1007760.t001
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Fig 4. The figures showed a comparison of the balanced and imbalanced sequences and performance of classifiers. It has

been done using the Wilcoxon rank test, A) Accuracy showed significant difference between balanced and imbalanced

sequences (p< 0.05) C) Sensitivity showed very significant difference between balanced and imbalanced sequences

(p< 0.001) E) Specificity revealed no significant differences at all levels G) F-score showed very significant difference between

balanced and imbalanced sequences (p< 0.001). Classifiers performance evaluation on imbalanced and imbalanced
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performances. Table 2 has depicted F-score values increasing from 0.50 while in the case of the

imbalanced sequences to 0.84.

Application of statistical significances

Statistical computation using the Wilcoxon rank test [39] between balanced and imbalanced

sequences depicts significant differences between these two groups. In addition, the perfor-

mance of NB, MLP, RF, GB, SVM and KNN statistically showed variation in accuracy, speci-

ficity, sensitivity and F-score values. Statistically very significant differences were noticed

between balanced and imbalanced in F-score and sensitivity (p< 0.001) and accuracies were

significantly different (p<0.05), whereas specificity showed no significant difference between

the two groups (Fig 4, S3 Table).

SVM was a very significant difference in all parameters used for performance evaluation,

F-score (p< 0.001) whereas accuracy, specificity and sensitivity were significantly different

(p< 0.05). RF performance in both groups has shown very significant differences in F-score

(p< 0.001) and accuracy (p< 0.01) (Fig 4 and S2 Table). In KNN we did not notice statistical

significant differences in all used parameters, except significant differences in specificity

(p< 0.05).

MLP of the balanced and imbalanced group depicted very significant differences in accu-

racy and sensitivity (p< 0.01). GB showed significant differences only in accuracy (p< 0.05).

Finally, both imbalanced and balanced sequences in the case of NB have shown very signifi-

cantly differences in F-score (p< 0.01), accuracy (p< 0.001), whereas specificity was a signifi-

cant difference (p< 0.05). Accuracy of all classifiers is significantly different at different levels

in both groups except in KNN (Fig 4 and S3 Table).

Biological functions of clustered k-mers
K-mers counting was extracted from distribution heat-map (Fig 2, S1 Fig), which depicted fea-

ture clustering and high relative count number. These clustered k-mers were used for biologi-

cal function and motif searching. Accordingly, in Table 3 riboswitch families and their k-mers
were used to verify their biological functions. Structural analysis from k-mers coverage results

is depicted in the case of RF00174 (A) and RF01055 (B). In every individual base, the color gra-

dient scale indicates a normalized count. Results depict different color scale in each region and

their interior loops, helices, and terminal loops (Fig 7).

Discussion

Machine learning has an enormous capacity to boost our knowledge in the classification of

riboswitch, an area that is still in the early stage of a comprehensive investigation. Numerous

machine learning applications have been developed based on different methods to detect

riboswitch. However, most riboswitch classification studies applied machine learning algo-

rithms on the imbalanced sequences [25,26]. Several findings revealed the impact of imbalance

sequences on correct classification and performance of algorithms [25,26,30]. Chawla and

sequences shown as B) Accuracy resulted to have significant difference in all classifiers except KNN (p< 0.05, p< 0.01, p<
0.001) D) Sensitivity observed to have significant difference in only MLP and SVM (p< 0.05) whereas the remaining

algorithms showed no differences F) Specificity depicted significant differences in NB, SVM and KNN (p< 0.05) on the other

hand MLP, RF and GB showed no differences in both sequences group H) F-score depicted very significance differences in

NB (p< 0.01), RF (p< 0.001) and SVM (p< 0.001) whereas KNN and MLP showed no differences. Violin box was used to

depict the statistical differences between two group were provided as the plots. (� indicated significant difference of p< 0.05,
�� denoted very significant difference of p< 0.01, and ��� showed very significant difference p< 0.001).

https://doi.org/10.1371/journal.pcbi.1007760.g004
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Fig 5. Confusion matrix for imbalanced sequences from independent test experiments depicted true family and predicted family. For the

classifiers such as: A) K-Nearest Neighbors, B) Support Vector Machine, C) Random Forest, D) Gradient Boosting, E) Multilayer Perceptron and F)

Naïve Bayes.

https://doi.org/10.1371/journal.pcbi.1007760.g005
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colleagues proposed SMOTE method of treating imbalanced sequences for better classification

of majority and minority instances [30,34]. SMOTE based balancing of sequences improves

the oversampling minority classes accurately and also produces sequences that do not influ-

ence majority class.

In this analysis, there are imbalances of instances in the riboswitch family. Comparative

results revealed the reality of the impact of such an imbalance on classification which has

widely been reported (S1 Table and Table 1). Imbalanced distribution exhibited variation

from 4826 majority class (Cobalamin riboswitch) to 39 minority class (PreQ1-II riboswitch).

General classifiers, when encountering such imbalanced data, favor class with majority

instances [30,34]. The analysis also revealed in imbalanced and balanced confusion matrix the

same problem (Figs 5 and 6). Out of 16 riboswitch class, cobalamin riboswitch, TPP riboswitch

(THI element), and glycine riboswitch sum up contribution was 68% while the remaining 13

riboswitch family has 32% instances. In Table 2, full sequences grouped into two sets training

(70%) and test set (30%) was selected and performances of classifiers were evaluated regarding

sensitivity, accuracy, specificity and F-score. The correlation heat-map in Fig 3 (see detail in S2

Fig) indicates the relationships between k-mers.

Imbalanced sequences in riboswitch showed different performances of classifiers ranked as:

MLP—the best and NB—the poorest regarding their mean scores that range from 0.771 to

0.961. In Table 2, individual score results of this method have shown best result in RF00234,

RF00522, RF01057 (1.00 in RF): greater values than reported in other study using BLAST+

[26,56], which is most popular tools in analysis of sequence similarity [56] and others [25,26].

Conversion of sequences into vector revealed good results in both groups used for analysis (S2

Table and Tables 1 and 2). In protein study, protein sequence converted into feature vectors

showed good performance in cases of SVM and KNN [57–60]. RF00174, RF00059, RF00504,

RF00522 predicted better than others with minority classes like RF01054, RF00634, RF00380

Table 2. Performances of Naïve Bayes (NB), Multilayer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), Support Vector Machine (SVM) and K-

Nearest Neighbors (KNN). These algorithms were evaluated using the balanced sequences from 16 riboswitch families measured by using accuracy, sensitivity, specificity

and F-score. The color trend of F-score from blue to red indicates performance from the best to the poorest. Accuracy, sensitivity, specificity, and F-score are represented

in the table as Acc, Sen, Spec, and F-sco, respectively.

NB MLP RF GB SVM KNN

Family Acc Sen Spec F-sco Acc Sen Spec F-sco Acc Sen Spec F-sco Acc Sen Spec F-sco Acc Sen Spec F-sco Acc Sen Spec F-sco

RF00059 0.99 0.96 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 0.98 0.94 1.00 0.96

RF00234 1.00 0.92 1.00 0.88 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.98 1.00 0.87 1.00 0.92 0.99 0.86 0.99 0.72

RF00521 0.98 0.91 0.99 0.47 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.91 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96

RF00522 1.00 0.66 1.00 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 0.97 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99

RF01054 1.00 0.56 1.00 0.50 1.00 0.89 1.00 0.94 1.00 1.00 1.00 1.00 1.00 0.56 1.00 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84

RF01057 0.99 0.88 0.99 0.69 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.92 1.00 0.96 1.00 1.00 1.00 0.99 1.00 0.96 1.00 0.82

RF00162 0.99 0.86 1.00 0.91 1.00 0.98 1.00 0.98 1.00 0.99 1.00 0.99 0.98 0.96 0.99 0.91 1.00 0.99 1.00 0.99 0.98 0.94 0.99 0.91

RF00174 0.96 0.92 0.97 0.93 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.95 0.81 1.00 0.89

RF00504 0.99 0.91 1.00 0.95 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.98 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.94 1.00 0.96

RF01051 0.99 0.83 1.00 0.91 1.00 0.99 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.97 1.00 0.97 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.97

RF00050 0.99 0.90 1.00 0.94 1.00 0.97 1.00 0.98 1.00 0.97 1.00 0.98 0.99 0.93 1.00 0.96 1.00 0.96 1.00 0.98 0.98 0.95 0.98 0.90

RF00380 0.98 0.89 0.98 0.69 0.99 0.99 0.99 0.96 0.99 0.94 0.99 0.98 0.99 0.82 0.99 0.84 0.99 0.99 0.99 0.98 0.98 0.95 0.98 0.73

RF00634 0.99 0.89 1.00 0.64 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.98 0.98 0.85 0.99 0.87 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.86

RF01055 0.99 0.82 0.99 0.79 1.00 0.95 1.00 0.95 1.00 0.93 1.00 0.96 1.00 0.73 1.00 0.85 1.00 0.95 1.00 0.96 0.99 0.83 0.99 0.73

RF00167 0.98 0.67 0.98 0.77 0.99 0.93 1.00 0.93 0.99 0.89 0.99 0.91 0.99 0.89 1.00 0.88 0.99 0.93 1.00 0.93 0.99 0.88 0.98 0.85

RF00168 0.98 0.90 0.98 0.62 0.99 0.83 1.00 0.84 0.99 0.85 0.99 0.81 0.99 0.71 1.00 0.72 0.99 0.79 1.00 0.80 0.98 0.80 0.98 0.60

https://doi.org/10.1371/journal.pcbi.1007760.t002
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Fig 6. Confusion matrix for the balanced sequences from independent test experiments. It showed True family and Predicted value with

classifiers as: A) K-Nearest Neighbors, B) Support Vector Machine, C) Random Forest, D) Gradient Boosting, E) Multilayer Perceptron and F)

Naïve Bayes.

https://doi.org/10.1371/journal.pcbi.1007760.g006
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(Tables 1 and 2). The class with maximum instances (RF00174) resulted in an F-score value

greater than 0.94 in all classifiers except NB, which had a value less than 0.93 in both cases.

NB classifier depicted poor performance in imbalanced sequences compared to other classi-

fiers. Its accuracy, sensitivity, specificity, and F-score had the following values 0.979, 0.989,

0.814 and 0.705, respectively (S2 Table). These results were improved to 0.985, 0.991, 0.841

and 0.771 when sequences were balanced. Compared with the F-score value reported by Hugo

and colleagues (NB-HEXCFS- 0.525), the changes indicated the influence of imbalanced

sequences on the performance of classifiers. Similarly, improved performance of NB on large

sequences has been reported [61].

Table 2, S2 Table, and Fig 4 indicate that the proposed method of balancing instances

increases classifier performances. The used approach was also reported as a solution for

machine learning [62]. RF shows the best result followed by MLP, which revealed optimal

Table 3. Clustered k-mers from S1 Fig used for validation of their biological function and reported riboswitch motifs. Nucleotide location designated refers to match

with their position reported in reference.

Rfam ID K-mers Position Riboswitch function and motifs Ref

RF00168 UCAU U57-U60 Motifs predicted to interact with the Nova-1 protein [40]

RF01051 CAAAG C22-G26 Secondary structure representation of the crystallized c-di-GMP aptamer, necessary for c-di-GMP binding pocket

formation

[41]

GGUC G8-C11 Found in Helices P1 area beginning of 50UTR [41]

RF00522 AAAAAA

AAAC

A27-A31

A30-C33

Overlaying K-mers in the 30 aptamer domain, rich in A, which has unique folding pseudoknot that compresses PreQ1 [42]

UCCCA U24-A18 Found in P2 of preQ1 riboswitch aptamer structure [42]

RF00504 CCGAAG C168-G173 The glycine-mediated changes in spontaneous cleavage (GAA) [43]

CUCU C204-U207 In glycine riboswitch, secondary structure and in-line decreasing cleavage pattern [43]

RF00059 UGAGA U39-A43 The pyrimidine part of TPP is bound by bulge J3-2 located in the pyrimidine-sensor helix P2-P3 [44]

RF00162 GAGGGA G19-A24 It is a kink-turn motif that allows pseudoknot interaction. It interacts with SAM which helps to make stable

formation, can cause the downstream expression platform to form a rho-independent TT (transcriptional

terminator), turning off gene expression

[45]

RF00634 CAACC

CCCUC

C54-C58

C57-C61

Overlapping k-mers in SAM-IV RNA binds SAM, last C in cleavage increased by SAM [46]

RF01057 AGGCUC A61-C66 In P1 SAH riboswitch control reporter gene Expression, ahcY 5’UTR [47]

CGCU C28-U31 In SAH riboswitch hairpin loops of P4 [47]

RF00521 GCUAAA G42-A47 Secondary structure of the Env12 metX SAM-II riboswitch its base-pairing reflecting the tertiary structure of the

SAM-bound RNA

[48]

RF00050 AGUC A126-C129 In the secondary structure of FMN, the first three AGU make hairpin loops and identified from B. cleavage. [49]

ACAGU

GGCGGU

A137-U141

G56-U61

Form Secondary-structure model of the 165 ribD RNA and side hairpin between P2 and 165 ribD RNA and side

hairpin

[49]

RF00174 CCCGC

AGUCAG

C70-C74 Predicted secondary structure of the cobalamin riboswitch in the btuB leader region of Synechococcus sp. Strain. The

boxed bases represent the B12 box-P1 helix interface, where a CC-to-TT (UU in the RNA structure

[50]

RF01055 GAAAGG G120-G125 Containing AGG at the site of Ribosomal Binding Site (RBS) located at multiple junction site. Region of the central

multi-stem junction in Sequence of the 138 moaA Moco RNA.

[51]

GCCU G18-U21 Found in a Moco RNA at left multiple junction site [51]

GCCUCC G106-C111 In Moco RNA, the last UCC makes parts of multiple junctions in P4. [51]

RF00380 UGAGG U28-G32 k-mers that found in part of a conserved bulge-stem region of Secondary structure of the 5‘M-box portion [52]

RF01054 AAAGG A83-G87 Structural modulation and nucleotides comprise a conserved Shine–Dalgarno (SD) [53]

AGCAU A58-U62 Unpaired Structural modulation containing constant cleavage [53]

AGAAAA A88-A93 Structural modulation, AGAA in decreasing cleavage and AA in constant cleavage [53]

RF00234 AGCGC A12-C16 Downstream of the ribozyme cleavage site Ribozyme core site P2a [54]

ACGAGG A53-G56 Ribozyme core region (Unpaired)

RF00167 CUAC C50-C53 structural features of the guanine aptamer domain and critical for metabolite binding [55]

https://doi.org/10.1371/journal.pcbi.1007760.t003
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performance. On the other hand, Naïve Bayes has poor performances in imbalanced sequences

classification, which is in accordance with Mwagha and colleagues [63,64]. The overall com-

parison revealed that balanced classifiers are better for classification of riboswitch, their perfor-

mances were compared to BLAST+ [26] and other finding (S3 Table and Tables 1 and 2).

The k-mers position in the secondary structure illustrated riboswitch biological function

and motif (Table 3 and Fig 7). In RF00174, CCCGC k-mers had predicted the secondary struc-

ture of the cobalamin riboswitch in the btuB leader region of Synechococcus. In cases like

RF00168, UCAU k-mer had motifs predicted to interact with the Nova-1 protein, overlaying

K-mers in the 30 aptamer domain, rich in A, which has unique folding pseudoknot that com-

presses PreQ1 [40]. Turning off gene expressing observed in RF00162 with GAGGGA k-mer,

is a kink-turn motif which allows pseudoknot interaction. It interacts with SAM which helps

to make stable formation, and can cause the downstream expression platform to form a rho-

independent TT (transcriptional terminator), turning off gene expression [45]. Overall, k-

mers and their biological function for this study are summarized and described in Table 3.

The pipeline can be used in machine learning and deep learning study in other domains

of bioinformatics and computational biology that suffer from imbalanced sequences. Finally,

the scientific community can use the python source code for analysis of interest as well as to

develop suitable software packages.

Fig 7. Secondary structure of RF00174 Cobalamin riboswitch (Acido bacterium) (A) and RF01055 MOCO riboswitch class (B). In every individual

base, the color gradient scale represents a normalized hit number from 156 features aligned to the sequence. The different color scale in each region

represents its coverage of the k-mers in the family that it represents. Whereas, I, H, and T are abbreviations for Interior loops, Helices, and Terminal

loops, respectively.

https://doi.org/10.1371/journal.pcbi.1007760.g007
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Methodology

We showed a complete evaluation of different machine learning approaches for classification

and predicting regulatory riboswitches. First of all, we present the benchmark sequences

and data mining approach followed by feature engineering that was done through testing.

Besides, model selection methods were used to model and compare balanced and imbalanced

sequences problem, as well as determine the best combination of hyperparameters for each

classifier [65]. These methods are implemented in an open-source machine learning platform

called WEKA 3.8 [66,67], SMOTE [31] and Python 3 [68], which allow evaluating different

parameters and algorithms for classification and prediction of the riboswitch. Lastly, we

described the results of classifications from the learned models. The workflow for the analysis

of imbalanced and balanced sequences used for performance evaluation of different machine

learning algorithms found in Fig 1. This workflow can be used for other research areas that

suffer from challenges of imbalanced sequences. The python source codes are available at

https://github.com/Seasonsling/riboswitch.

Data preprocessing

Sequences for investigation were collected from Rfam 13.0 [19] and other sequences that were

already produced [26], intended for comparison of our new methods. Rfam is a source that

collects RNA families including riboswitch [19]. There is a need to use a machine learning

approach to train algorithms to classify riboswitch as it has been happening in other areas of

bioinformatics. Only 16 families have been used to compare with previous research work and

they clearly show the impact of imbalanced training sequences on the performance of classifi-

ers. Preprocessing, cleaning and filtering were done, as well as handling missing values, noisy

data, redundant features and irrelevant features to affect the accuracy of the model [67]. The

sequences that contain sequences per family are shown in S1 Table.

Feature selection

FASTA format sequences were used for k-mer (1� k� n) frequency counts through executing

in the R package called kcount [69]. In order to obtain a sufficiently informative k-mer count-

ing matrix for the task [70], we set k value to 6 and finally got 5,460 features. This k-mers com-

position was used to make frequencies of each riboswitch. This avoids unnecessary computing

power consumption and dimensional disaster caused by extremely sparse matrices due to high

k values as well.

Attribute evaluators CfsSubsetEval and BestFirst were used for dimensionality reduction

and searching of the space of attribute subsets by greedy hill-climbing augmented with a back-

tracking facility [71], which was consistent with some other researchers [26]. WEKA 3.8 was

used to implement the task [66,67]. Feature selection was done for the dimensionality reduc-

tion and thus for decrease processing load [72,73].

Imbalanced data

The sequences for this finding contains the imbalanced sequences ranging from 4,826

instances (RF00174) to 39 (RF01051) instances (S1 Table). Learning from the imbalanced

sequences that become critical concerns nowadays, particularly when minority class contains

small instances in its sequences [25,26,74]. Mainstream methods of dealing with imbalance

data can be roughly divided into two categories. The first category considers the difference in

the cost of different misclassifications [75], while the second one mainly focuses on training

data sampling strategies. Here over-sampling and under-sampling were conventional
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techniques used to adjust class distribution. However, traditional random oversampling adopts

the strategy of merely copying samples to increase the minority samples, which is prone to the

problem of overfitting that makes the information learned by the model over-fitted and not

generalized [76].

SMOTE improved scheme based on random oversampling was applied [59]. The basic idea

of the SMOTE algorithm is to analyze a small number of samples and to add new samples to

the data set based on a small number of samples.

The used algorithm flow is as follows:

For each sample x in a few classes, calculate the distance from all samples in a few samples

sets by Euclidean distance, and get its k-nearest neighbors.

Set a sampling ratio according to the sample imbalance ratio to determine the sampling

magnification N. For each minority sample x, randomly select several samples from its k-near-

est neighbors, assuming that the selected neighbor is x̂.

For each randomly selected neighbor x̂, construct a new sample with the original sample

according to the following formula:

xneo ¼ xþ randð0; 1Þðx̂ � xÞ ð1Þ

SMOTE was deployed through importing “imblearn.over_sampling” module in Python 3

and it was applied both in the corresponding training set of 10-fold cross-validation and build-

ing final model processes, as shown in Fig 1.

Machine learning models

A crucial step in machine learning is model selection, as the performance of algorithms is sen-

sitive to the calibration parameters. Configuration and choice of the hyper-parameters are

found to be crucial. For our data, we calibrated a model using 10-fold cross-validation. Firstly,

the complete feature selection of k-mers sequences was divided into two parts randomly: 70%

of data were training set, while 30% of data as the test set. The 70% training set was used to

build multiclass classification models and determine the hyper-parameters through 10-fold

cross-validation. Then, the test set was used to test the final generalization performance of the

balanced and imbalanced models. In order to increase the credibility of comparison results

and to ensure the repeatability of the results, all sequences were chosen randomly. Input data

and model parameters except for the step of SMOTE processing were strictly consistent for

both balanced and imbalanced models. This task was left to make pipeline module and Pipeline
object in Python package imblearn (0.5.0), which ensures that in cross-validation or generali-

zation testing, SMOTE only treats the training data used to build the cross-validation model or

the final model. By this means, the validation set in each fold cross-validation was consistent in

all models just as in the case of the 30% test set.

During the model selection process, for each algorithm, the grid search method was applied

to traverse all hyper-parameter combinations, while 10-fold cross-validation method for evalu-

ating each parameter combination. Specifically, the program randomly divided the 70% train-

ing set into ten straight sections. During each cycle of the model training step, nine of those

sections were treated by SMOTE (the control group not), and then for model training. Subse-

quent that, the remaining section of the training set will test the model and obtain a series of

test indicators, including macro F-score, macro recall and macro precision. The valid score

was calculated through the below formula:

Scorevalid ¼ F‐scoremacro � 0:6þ recallmacro � 0:2þ precisionmacro � 0:2 ð2Þ
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Running the above cycle ten times independently, we take the average of ten valid scores as

the overall performance index of the model under this parameter combination. After evaluat-

ing all the parameter combinations with the grid-search method, we pick the model with the

highest comprehensive performance index as the final model.

Experimentation classifiers

Random Forest is a commonly used machine learning algorithm [77] with different successful

function in computing and bioinformatics [77–79]. It randomizes the variables (columns) and

data (rows), generating thousands of classification trees, and then summarizing the results of

the classification tree. In this research, the mean decrease impurity method was used.

SVM is a simple and efficient method for solving the quadratic programming problem [80]

through computing the maximum marginal hyper-plane [66]. In SVM, the kernel function

implicitly defines the feature space for linear partitioning, which means the choice of kernel

function is the largest variable of SVM.

Gradient boosting is a boosting algorithm, which belongs to ensemble learning as well as

random forest and proved to have great performance in imbalance problem. It builds the

model in a stage-wise fashion, and generalizes them by allowing optimization of an arbitrary

differentiable loss function [81].

Another classifier is k-Nearest Neighbors (KNN) which also named IBK (instant-based

learning with parameter k). This classifier offers numerous choices to speed up the undertak-

ing to locate nearest neighbors [67], NB (Naïve Bayes) classifier based on Bayes’ theorem [49].

This is a probability-based model in Bayesian networks [82]. MLP is another commonly used

machine learning algorithms [83]. ncRNA classification and prediction problems have been

widely conducted based on the six selected algorithms for this analysis [84–86] and riboswitch

classification and prediction [3,26].

The tuning of KNN, SVM, RF, GB and MLP was carried out on the training set by evaluat-

ing the macro F-score in Python 3. The configurations of their parameters are as follows:

KNN: number of k = {2, 4, 6, 8, 10, 12, 14, 16}

SVM: type of kernel function = {linear, poly, rbf, sigmoid}

RF: with the method of GridSearchCV and kfold = 10, the number of trees in the forest = {500,

1000, 2000}, the maximum depth of the tree = {10, 15, 20}

GB: with the method of GridSearchCV and kfold = 10, the number of trees in the forest =

{500, 1000, 2000}, learning rate = {0.01, 0.1, 0.05}, the maximum depth of the tree = {7, 9,

11, 15}

MLP: with the method of GridSearchCV and kfold = 10, hidden layer size = {{80, 80, 80}, {100,

100, 100}, {150, 150, 150}}, L2 penalty (regularization term) parameter = {1e-3, 1e-4}, the

solver for weight optimization = {‘adam’, ‘sgd’}, tolerance for the optimization = {1e-8, 1e-7,

1e-6}

Gaussian NB: portion of the largest variance of all features that is added to variances for calcu-

lation stability = {1e-16, 1e-14, 1e-12}

Evaluation

In order to evaluate the performance of the classifiers, the confusion matrices were used to

compute sensitivity, specificity, accuracy and F-score [32,87]. Most researchers used a

weighted F-score to evaluate the classifier’s overall performance. However, it leads to

PLOS COMPUTATIONAL BIOLOGY A novel riboswitch classification by machine learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007760 July 20, 2020 17 / 23

https://doi.org/10.1371/journal.pcbi.1007760


assessment bias between majority families and minority families. In this evaluation, we used

macro F1 instead, which gives an arithmetic mean of the per-class F1-scores and avoids assess-

ment bias to some extent. A statistical test was carried out in GraphPad Prism 8.3.0 using the

Wilcoxon rank test and multiple Wilcoxon rank test at p< 0.05, 0.01, 0.001 level (“Wilcoxon

rank test were performed using GraphPad Prism version 8.3.0 for Windows, GraphPad Soft-

ware, La Jolla California USA, www.graphpad.com”).

We used the following abbreviations: True Positives (TP), False Positive (FP), True Negative

(TN), and False Negative (FN). The used formulas are as follows:

Sensitivity ¼
TP

TPþ FP
ð3Þ

Specificity ¼
TN

TP þ FN
ð4Þ

Accuracy ¼
TP þ TN

TP þ FN þ TN þ FP
ð5Þ

F‐score ¼ 2TP
2TPþ FPþ FN

ð6Þ

Supporting information

S1 Table. The table used for the purpose of comparison of imbalanced and balanced

sequences from Rfam database. The training (70%) and test sequences (30%) for classifica-

tion and evaluation performance of machine learning algorithms. Feature distribution across

different 16 riboswitch families using heat-map is shown in Fig 2.

(DOCX)

S2 Table. Classifiers’ performances with balanced and imbalanced sequences arranged in

F-score decreasing order in case of the balanced sequences. For a specific classifier, mean

represents average sensitivity, specificity, accuracy and F-score value, while standard deviation

(SD) depicted variation in different riboswitch families.

(DOCX)

S3 Table. The statistical difference of four measurements between the balanced and imbal-

anced sequences. Bolded p-values indicate the statistical difference (SD).

(DOCX)

S1 Fig. Heat-map in this figure represented as row and columns. A) row-normalized k-mer

counting distribution, rows correspond to the k-mers, and columns revealed 16 families of

riboswitch and B) the clustering heatmap depicts feature clustering, clustered features were

essential for classification in that family. Red means a high relatively counting number while

blue means lower.

(TIF)

S2 Fig. Heat-map showed 156 features correlation. The diagonal white line represented their

correlation factor equals to one. Blue means a positive correlation, while red means a negative

correlation.

(TIF)
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