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ABSTRACT

The iterative algorithme of Chen and Lee for
the design of quasiequiripple QMF banks in
the frequency domain is modified; the weig-
hting function incorporated in the objective
function is updated at the end of each
iteration. As a result, the number of iteration
and the number of floating point operations
are reduced significantly.

I. INTRODUCTION

Quadrature mirror filter (QMF) banks find
applications in many areas such as image
compression, subband coding for speech
processing, and transmultiplexers for teleco-
munications. Many methods for the design of
linear-phase two-channel filter banks have
been reported in the literature since the mid-
1970's. It is known that the design of QMF
banks in the frequency domain can be
accomplished by using least-squares and
minimax methods. On the other hand, it has
been shown that the minimax design can be
performed if an adequately updated weight-
ing function is included in a least-squares
objective function [1]−[3]. The design is a
typical unconstrained and highly nonlinear
optimization problem due to the fact that the
objective function is a fourth-order function
of the design parameters. In [1] Chen and
Lee have proposed a linearization technique
and derived an analytical design formula.
Based on this formula, the coefficients of the
required low-pass filter can be obtained by
solving a set of linear equations at each
iteration. They also have incorporated the
proposed technique with a weighted least-
squares algorithm [2]. Thus they have

obtained QMF banks having overall recon-
struction error minimized in the minimax
sense, in addition to the QMF filters having
least-squares stopband error.

The method of Chen and Lee leads to a
very efficient algorithm for the considered
design problem. An improved implementa-
tion of this algorithm, concerning the eva-
luation of two integrals involved in the
computation of the objective function, has
been reported in [4]. A recently developed a
new iterative method [5] is also based on the
same algorithm, and the improvements result
from the formulation of perfect reconstruc-
tion condition in the time domain.

In this paper we propose another way of
using a weighted function to minimize the
overall reconstruction error in the minimax
sense. It consists in updating the weighted
function at the end of each iteration. As a
result, the number of iterations is signifi-
cantly reduced, while the QMF banks have
practically the same characteristics as those
obtained by the original algorithm. The
number of floating point operations is also
reduced.

The paper is organized as follows.
Section II briefly describes the original
algorithm due to Chen and Lee [1]. Section
III introduces our proposal for an alternative
realization of the algorithm, along with two
design examples for illustration and compari-
son. The conclusions are given in Section III.

II. THE BASIC IDEA AND STRUCTURE OF THE

ORIGINAL ALGORITHM

Chen and Lee use the following notation for
a two-channel QMF bank: H0 and H1 are the



lowpass and highpass filters, respectively, of
the analysis section, and F0, F1 are the
corresponding filters of the synthesis section.
Their impulse responses are h0(n), h1(n),
f0(n) and f1(n). All filters are assumed to be
linear phase and they are all of length N,
where N is even. The frequency response of
the lowpass analysis filter, H0(e

jω), satisfies
power complementary property
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The reconstruction error is defined as
er(ω) = T(ejω) −1, and the objective function
E to be minimized in the weighted least-
squares sense is given by
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where Er is the energy of the reconstruction
error, Es is stopband energy related to H0, α
is the relative weight between Er and Es,
W(ω) is a weighting function, and ωs is the
stopband frequency.

A basic idea in the algorithm [1] is that
the conditions for a perfect reconstruction
system are satisfied when the frequency
response of the lowpass synthesis filter
F0(e

 jω) is very close to the frequency
response of the lowpass analysis filter H0 at
k th iteration H0

(k)(e jω). Chen and Lee have
reformulated the design problem as follows.
The coefficients {f0(n), n = 0, 1, ..., N/2−1} of
the lowpass synthesis filter F0 must be found
such that the overall error function
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is minimized at the (k+1)th iteration, where
T(ejω) can be expressed as
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The frequency responses of the QMF
filters and the related error functions are
evaluated on a dense grid of frequency
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linearly distributed in the range from ω = 0
to ω = π. The matrix form of the objective
function E at k th iteration is given by
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For the matrices included in (2) and other
details we refer to the original paper [1].
Here we list only the expressions mentioned
in the summary of Chen and Lee’s algorithm.

The weighting matrix W associated with
the weighting function W(ω) is

W W W Ws L= diag[ ( ), ( ), ( )]ω ω ω1 L L . (3)

The coefficient vector
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is obtained by solving the following set of
linear equations
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The coefficients of the lowpass analysis filter
H0 at the (k+1)th iteration are computed by
the updated formula
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for 0 ≤ n ≤ N/2−1 and 0 < τ < 1.
The design process is terminated when
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The weighting function W(ω) used in (3)
and (4) is adjusted appropriately from itera-
tion to iteration in order to minimize the
reconstruction error in the minimax sense. At
the (k+1) th iteration

W W vk k k( ) ( ) ( )( ) ( ) ( )+ =1 ω ω ω (7)



where v(k)(ω)>0 is the required update at the
k th iteration and v(k)(ωi)> v(k)(ωj) if
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The function v(k)(ω) is obtained by using an
envelope function B(k)(ω) whose construction
is explained in [1]
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The parameter θ affects the convergence
(θ = 1.5 is recommended as an optimal
choice). The design process is terminated
when the resulting reconstruction error is
“equiripple” enough. A stopping criterion is

max( ) min( )
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where max(V) and min(V) denote the maxi-
mum and the minimum values of the recon-
struction error over all extremal frequencies,
respectively, and κ is a positive constant.

The flowgraph of the algorithm due to
Chen and Lee is shown in Fig. 1.

III. ALTERNATIVE REALIZATION OF THE

ALGORITHM

The algorithm of Chen and Lee includes a
minimization of  the objective function (1) in
the least square sense. The weighted function
W(ω) which is incorporated in (1) stays inva-
riant during this minimization. Only when the
relative error at the (k+1) th iteration (6) is
smaller than ε is the minimization performed
using the minimax criterion. However, the
weighted  function depends on the reconstru-
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Fig. 1.  Flowgraph of  the original algorithm.

ction error er(ω), which changes from
iteration to iteration. Taking this fact into
account we can expect that the number of
iterations would be reduced if W(ω) is
updated at the end of each iteration. A
reduced number of iterations results in a
decrease in the total number of operations.
Our computer simulations show that the
decrease in the number of operations is
significant. The modified version of Chen
and Lee’s algorithm is depicted in Fig. 2.

The modified algorithm also differs from
its original by its output coefficients. As it
can be seen from Fig. 2, our algorithm out-
puts the coefficients {f0(n)}, while Chen and
Lee’s algorithm outputs {h0(n)}. It follows



from (5) that when the relation (6) is
satisfied, {f0(n)} is different from {h0(n)}.
On the other hand, {f0(n)} is the unique
vector which minimizes the objective func-
tion (1). Hence, setting {h0(n)} ← {f0(n)}
instead of {f0(n)} ← {h0(n)} produces filters
with somewhat better frequency responses.
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Fig. 2.  Flowgraph of  the modified algorithm.

For illustration and comparison we
include two examples with the same design
parameters and the same initial filters for
starting the iterative process as in [1].

Example 1: This example is the same as
example 3 in [1]. The design parameters are:
N = 32, ωs = 0.6π, α = 1, ε = 0.001, κ =
0.02, τ = 0.5, and θ = 1.5. The coefficients
of the initial filter are h0

(0)(n) = 0.5 for n =
N/2 −1, N/2, and h0

(0)(n) = 0, elsewhere. The
signals in the frequency domain are discreti-

zed to L = 8N = 256 samples. Table 1 lists
the stopband edge attenuation of the lowpass
analysis filter, the peak reconstruction error
of the resulting QMF bank, the number of
iterations and the number of floating point
operations in millions (Mflops).

TABLE 1

Algorithm original modified

Stopband atten. 36.268 dB 36.336 dB
Peak rec. error 0.0124 dB 0.0123 dB
Number of iter. 20 12
Mflops 178. 539 107. 203

Example 2: The design parameters are the
same as those used in the previous example.
A better initial filter for starting the iterative
process is generated by the Remez exchange
algorithm. This filter satisfy the following
specifications:
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The results are shown in Table 2.

TABLE 2

Algorithm original modified

Stopband atten. 36.400 dB 36.336 dB
Peak rec. error  0.0124 dB 0.0124 dB
Number of iter. 15 10
Mflops 133. 944 89. 349

III. SUMMARY

We have considered Chen and Lee’s algo-
rithm for an iterative design of QMF banks in
the frequency domain. We proposed an
alternative realization of this algorithm which



differs from the original in two details.  First,
the weighted function incorporated in the
objective function is updated at the end of
each iteration, thus adequately following
changes of the reconstruction error function.
As a result, the QMF banks are obtained in
fewer iterations and a smaller number of
floating point operations. Our computer
simulations show that the improvement in
the number of operations is at least 40%.
Second, the set of output coefficients is
somewhat different from those in the original
algorithm. This yields to a slight improve-
ment in the filters’ frequency responses.
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