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Abstract. In the Industry 4.0 era, preventive maintenance plays a crucial role 
in ensuring system reliability and minimizing downtime. Among others, the key 
reasons include integration of smart technologies, increased system complexity, 
cost reduction, enhanced productivity and efficiency, and regulatory compliance 
and safety. In this context, this paper evaluates a Deterministic and Stochastic 
Petri Net (DSPN) model of a generic system experiencing alternating failures 
and repairs while undergoing preventive maintenance at regular intervals. Unlike 
traditional models, the proposed approach incorporates time shifts, where each 
failure and subsequent repair reset the countdown to the next preventive mainte-
nance. The DSPN framework captures the stochastic nature of failures and repairs 
alongside deterministic scheduling constraints. Performance evaluation focuses 
on system availability under two scenarios: a low availability system and a high 
availability system. The results provide insights into how time-shifted preventive 
maintenance strategies impact long-term system performance. This study con-
tributes to the overall body of knowledge about optimizing maintenance policies 
by balancing preventive interventions and corrective actions, supporting enhanced 
operational efficiency in industrial systems. 

Keywords: preventive maintenance · Deterministic and Stochastic Petri Nets 
(DSPNs) · modeling and simulation · system availability analysis · TimeNET® 

1 Introduction 

Preventive maintenance (PM) is a strategic, proactive approach designed to minimize the 
risk of unexpected equipment failures and optimize operational efficiency. As a subset of 
planned maintenance, PM plays a crucial role in effective asset and facilities management 
by encompassing a broad spectrum of routine inspections, servicing, and performance 
assessments. By addressing potential issues before they escalate into costly breakdowns, 
PM helps industrial organizations enhance reliability, extend asset lifespan, and reduce 
downtime-related losses [1, 2]. In the Industry 4.0 era, maintenance strategies increas-
ingly leverage Internet of Things (IoT), artificial intelligence (AI), and Big Data analytics
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to enable real-time monitoring and insights into machine health. Predictive and preven-
tive maintenance strategies both help anticipate failures before they occur, reducing 
unexpected breakdowns and unplanned downtime. On the other hand, modern industrial 
systems are highly interconnected and automated, making unplanned failures more dis-
ruptive, whilst preventive maintenance ensures smooth operation and reduces cascading 
failures in such cyber-physical systems. Reactive maintenance can be expensive due to 
emergency repairs, production halts, and damaged components. Preventive maintenance 
optimizes maintenance schedules, reducing overall costs by expanding asset lifespans. 
Scheduled maintenance activities prevent unscheduled downtime, improving production 
continuity and system availability. At last, but not at least, many industries have strict 
safety and compliance requirements. Preventive maintenance helps meet these regula-
tions, reducing risks to equipment and personnel, thus contributing to better workplace 
safety. By minimizing waste from unplanned maintenance trips and excessive spare parts 
inventory, PM also enhances sustainability. By proactively maintaining equipment, orga-
nizations can maximize operational efficiency and maintain competitive advantages in 
the Industry 4.0 landscape [3]. 

The preventive maintenance based on time, also known as time-based preventive 
maintenance (TbPM), periodic maintenance, or calendar-based PM, is a proactive pre-
ventive maintenance strategy in which equipment is serviced, inspected, or replaced at 
predetermined intervals, regardless of its actual condition. By adhering to a fixed sched-
ule, TbPM aims to reduce the likelihood of unexpected failures, enhance reliability, and 
extend asset lifespan. This systematic approach is particularly beneficial for components 
with predictable wear patterns, where regular upkeep helps maintain efficiency and safety 
[4]. In the dynamic field of maintenance management, TbPM remains a fundamental 
and widely adopted strategy for preserving the longevity and performance of machinery 
and infrastructure. While more advanced, condition-based and predictive maintenance 
methods have emerged with technological advancements, TbPM continues to serve as 
a reliable framework, especially in industries where scheduled servicing aligns with 
operational requirements and regulatory compliance [5]. 

Recognizing the significance of TbPM in today’s highly digitalized environments as 
well as the importance of availability as one of the most important performability mea-
sures, this paper evaluates the impact of one of the TbPM variants on system availability 
using a Deterministic and Stochastic Petri Net (DSPN) model originally developed and 
proposed by Hristoski & Dimovski in 2022 [6]. The DSPN methodology was chosen 
for this study due to its ability to accurately model and analyze complex maintenance 
processes that involve both stochastic (random) and deterministic (fixed-time) events. 
This hybrid modeling capability is essential for capturing the realistic behavior of a 
system undergoing failures, repairs, and preventive maintenance with time shifts. The 
evaluation of the DPSN model has been carried out using TimeNET®, a software pack-
age dedicated to the modeling and evaluation of various classes of stochastic Petri Nets, 
which support transitions with immediate, exponentially distributed, deterministic, and 
general firing time distributions [7, 8]. It was selected as the modeling and analysis tool 
due to its specialized capabilities in handling the class of DSPNs and its well-established 
use in reliability and availability modeling. The main research question that this study 
strives to answer is how this specific TbPM strategy affects the availability of a generic
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system undergoing consecutive corrective maintenance (failures and repairs). This way 
the study aims to fill the empirical gap by evaluating a realistic DSPN model that cap-
tures the time shifts in TbPM of a generic system susceptible to failures and repairs, 
integrating both stochastic and deterministic dynamics, and evaluating system availabil-
ity under low- and high-availability scenarios through simulation-based validation using 
TimeNET®. While various methodologies, such as Markov Chains (MCs) and Semi-
Markov Processes (SMPs), Reliability Block Diagrams (RBDs), Fault Tree Analysis 
(FTA) with time-dependent extensions, Monte Carlo simulations, various mathematical 
optimization models and most recently, Machine Learning (ML) and predictive mainte-
nance models, have been extensively used for TbPM evaluation, DSPNs offer a unique 
advantage by combining stochastic failures, deterministic PM, and time-shift effects in 
a single framework, making them ideal for the study’s objectives. 

The rest of the paper is structured as follows: Sect. 2 provides a review of recent 
research on preventive maintenance modeling and evaluation using various classes of 
stochastic Petri Nets, while Sect. 3 presents the DSPN model and details the methodology 
used for its assessment. The steady-state analysis of the DSPN model is presented in 
Sect. 4, whilst the obtained analysis results are discussed in Sect. 5. The last section 
concludes the study and suggests directions for future research. 

2 Related Research 

Recent research on various aspects of PM has surged, underscoring the need for more 
adaptive, data-driven maintenance strategies to enhance reliability, minimize downtime, 
and optimize costs in Industry 4.0. Various classes of stochastic Petri Nets have been 
widely employed as robust modeling tools as well as powerful and versatile graphical and 
mathematical frameworks to analyze a wide gamut of real-world discrete-event dynamic 
systems, offering valuable insights into the impact of various maintenance strategies on 
their performability aspects. 

Over the past decade, research on maintenance modeling with Petri Nets (PNs) 
has surged significantly, encompassing a wide range of PN classes, including Gener-
alized Stochastic Petri Nets (GSPNs) [9–11], Colored Petri Nets (CPNs) [12–15], and 
Deterministic and Stochastic Petri Nets (DSPNs) [16]. 

Petri Nets were used to model the maintenance activities of wind turbines [9], to 
model, simulate, and optimize maintenance costs on multiunit systems [10], to model 
and evaluate the maintenance processes for railway systems [12], in technological facil-
ities [14], for aircraft maintenance [15], to help improve the reliability and availability 
of an electric power system’s infrastructure [17], as well as to plan and optimize main-
tenance logistics of small hydroelectric power plants [18]. Reference [19] proposed a 
methodology to properly define the optimal structure and properties of reduced complex 
Petri Net models used in maintenance modeling. Recently, several DSPN-based models 
of TbPM strategies have been proposed in [6], whilst a broader overview of various 
maintenance strategies using the classes of GSPNs and DSPNs was conducted in [20]. 
An evaluation of the availability of a similar DSPN model for a generic system prone to 
consecutive failures and repairs, also subject to time-based preventive maintenance but 
without time shifts, can be found in [21].
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3 The DSPN Model 

This study utilizes the DSPN model to analyze a preventive maintenance strategy based 
on predetermined time intervals, while incorporating dynamic time shifts, as initially 
introduced by Hristoski & Dimovski in 2022 [6]. The model, depicted in Fig. 1, represents 
a generic system prone to failures that necessitate corrective maintenance actions. In 
addition to reactive repairs, the system undergoes scheduled preventive maintenance, 
which is planned at fixed intervals and executed only if corrective maintenance has not 
already been performed. Notably, in this framework, preventive maintenance cycles are 
not strictly time-fixed; instead, they are influenced by preceding corrective maintenance 
activities, leading to shifts or delays in the TbPM schedule. In other words, any corrective 
maintenance activity resets the PM cycle, causing the next PM to be rescheduled. 

Fig. 1. SDSPN model of a generic system undergoing failures and repairs, which is also subject 
to TbPM cycles based on pre-determined time intervals with time shifts (Source: The Author) 

If a failure occurs (i.e., a token is placed in the place P_sys_FAIL after the exponen-
tial transition T_sys_MTTF fires), the countdown to the next PM session is suspended 
(i.e., there is no token in place P_start_timer). Once the corrective maintenance is com-
pleted (i.e., a token is placed back in place P_sys_WORK after the exponential transition 
T_sys_MTTR fires), the system returns to an operational state (i.e., there is a token in 
place P_sys_WORK) and, simultaneously, the countdown to the next PM session is 
restarted (i.e., a token is put in place P_start_timer). 

If no failure occurs before the scheduled start of the PM session (i.e., a token is 
removed from place P_start_timer and put in place P_start_PM after the deterministic 
transition T_time_to_PM fires), a PM session is conducted, lasting on average 1/φ time 
units, where φ represents the firing rate of the exponential transition T_PM. Upon suc-
cessful completion of the PM session (i.e. a token is put in the place P_end_PM after the
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exponential transition T_PM fires), the immediate transition T_restart_timer fires, plac-
ing a token in place P_sys_WORK (i.e., indicating that the system becomes operational 
again) and also placing a token in place P_start_timer (i.e., marking the beginning of a 
new PM countdown, which will last τ time units unless interrupted by a failure). 

4 The Analysis 

The marking M = (#P_sys_WORK #P_sys_FAIL #P_start_timer #P_start_PM 
#P_end_PM) is a five-tuple representing the number of tokens in each place in the 
DSPN model [22, 23]. Figure 2(a) shows the corresponding Extended Reachability 
Graph (ERG), where the tangible marking when the deterministic transition is enabled, 
is represented with a bolder-line rectangle (i.e., the initial marking M0 = (1 0 1 0  
0)), the tangible markings where only exponential transitions are enabled are drawn by 
regular-line rectangles (i.e., markings M1 and M2), while the marking M3 = (0 0 0 0  
1), represented by a dashed-line rectangle, shows the vanishing marking when the only 
immediate transition is enabled. The equivalent Reduced Reachability Graph (RRG), 
depicted in Fig. 2(b), is derived from the ERG by eliminating the vanishing marking 
M3. 

Fig. 2. DSPN model of a generic system undergoing failures and repairs, which is also subject to 
TbPM cycles based on pre-determined time, with time shifts (Source: Author’s representation) 

Given that the RRG is comprised of three tangible markings (i.e., M0, M1, and M2), 
the corresponding steady-state probabilities π0, π1, and π2, representing the long-run 
probabilities of the system being in different states, can be defined as joint measures 
over each tangible marking, as follows: 

• The sum of π0, π1, and π2 equals 1. 
• For marking M0 (system working, timer waiting): 

π0 = P{(#P_sys_WORK = 1) ∧ (#P_sys_FAIL = 0) ∧ (#P_start_timer = 1) 
∧ (#P_start_PM = 0)} is the steady-state probability that the system is operational 
(#P_sys_WORK = 1), so it is directly linked with system availability;
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• For marking M1 (system failed, timer waiting): 
π1 = P{(#P_sys_WORK = 0) ∧ (#P_sys_FAIL = 1) ∧ (#P_start_timer = 0) ∧ 

(#P_start_PM = 0)} is the steady-state probability that the system is in a failure state 
(#P_sys_FAIL = 1), so it is directly linked to system unavailability (i.e., downtime) 
due to corrective maintenance (i.e., repairs); 

• For marking M2 (preventive maintenance active): 
π2 = P{(#P_sys_WORK = 0) ∧ (#P_sys_FAIL = 0) ∧ (#P_start_timer = 0) 

∧ (#P_start_PM = 1)} is the steady-state probability that the system is undergo-
ing preventive maintenance (#P_start_PM = 1), so it is directly linked to system 
unavailability due to carrying out PM actions, thus giving insights into PM scheduling 
efficiency and the impact of PM on availability. 

In this context, it is worth noting that the availability of the system equals the steady-
state probability π0, the nonavailability due to system failures equals π1, whilst the  
nonavailability due to TbPM activities equals π2. The total nonavailability of the system 
equals the sum of π1 and π2. 

The steady-state analysis of the DSPN model has been conducted with numerical 
simulations using TimeNET® for two types of generic systems: 

• Those exhibiting features of low availability (i.e. frequent failures, long repairs), 
under the following restrictions: 

o Mean Time of Preventive Maintenance (MTPM) = 5 [h] (fixed); in real-world 
scenarios, it usually takes values from the interval [1; 10]; 

p Mean Time to Failure (MTTF) [h] is variable and takes values from the interval 
[100; 500] with a step of 100 [h]; 

q Mean Time to Repair (MTTR) [h] is variable and takes values from the interval 
[10; 50] with a step of 10 [h]; 

r Time to Preventive Maintenance (TTPM) [h] is variable and takes values from the 
interval [100; 1,000] with a step of 100 [h]; 

• Those exhibiting features of high availability (i.e. rare failures, quick repairs), under 
the following restrictions: 

o Mean Time of Preventive Maintenance (MTPM) = 2.5 [h] (fixed); in real-world 
scenarios, it usually takes values from the interval [0.5; 5.0]; 

p Mean Time to Failure (MTTF) [h] is variable and takes values from the interval 
[20,000; 10,0000] with a step of 10,000 [h]; 

q Mean Time to Repair (MTTR) [h] is variable and takes values from the interval [1; 
5] with a step of 1 [h]; 

r Time to Preventive Maintenance (TTPM) [h] is variable and takes values from the 
interval [1,000; 10,000] with a step of 1,000 [h]. 

4.1 Low-Available Systems 

Low-available systems experience frequent failures and require significant corrective 
maintenance since they operate in harsh environments (i.e., they are continuously 
exposed to extreme temperatures and dust, debris, and heavy loads that accelerate wear
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and tear on their mechanical components) or they use aging components/parts. These 
systems usually achieve availability levels from 60% to 90%. 

In the case of low-available systems, the 3D surface plots of how system’s availability 
(Z-axis) depends on MTTF and MTTR (X-axis), and TTPM (Y-axis) given that Mean 
Time of PM (MTPM) is 5.0 [h], are shown in Fig. 3(a) and Fig. 3(b), respectfully. 

The comparison between the achieved availabilities of a low-available generic sys-
tem, with and without TbPM cycles based on pre-determined time with time shifts, 
including the availability’s relative decrease when TbPM is leveraged, is presented in 
Fig. 4(a). On the other hand, the graphic presentation of generic system’s nonavailability, 
achieved with and without TbPM cycles based on pre-determined time with time shifts, 
including the nonavailability’s relative increase when TbPM is leveraged, is presented 
in Fig. 4(b). 

Fig. 3. 3D surface plots of system’s availability as a function of (a) MTTF and TTPM and (b) 
MTTR and TTPM for low-available generic systems undergoing failures and repairs, which are 
also subject to TbPM cycles based on pre-determined time with time shifts (Source: The author, 
using TimeNET® simulation results and MATLAB® 3D graphics) 

4.2 High-Available Systems 

Contrary to low-available systems, high-available systems are designed for minimal 
downtime, often featuring redundancy, advanced monitoring, and fast maintenance 
strategies, usually achieving availability levels from 99% to 99.999%. 

In the case of high-available systems, the 3D surface plots of how system’s avail-
ability (Z-axis) depends on MTTF and MTTR (X-axis), and TTPM (Y-axis) given that 
Mean Time of PM (MTPM) is 2.5 [h], are shown in Fig. 5(a) and Fig. 5(b), respectfully. 

The comparison between the achieved availabilities of a high-available generic sys-
tem, with and without TbPM cycles based on pre-determined time with time shifts, 
including the availability’s relative decrease when TbPM is leveraged, is presented in 
Fig. 6(a). On the other hand, the graphic presentation of generic system’s nonavailability, 
achieved with and without TbPM cycles based on pre-determined time with time shifts, 
including the nonavailability’s relative increase when TbPM is leveraged, is presented 
in Fig. 6(b).
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Fig. 4. Comparison between the achieved availability with and without TbPM for low-available 
generic systems undergoing failures and repairs, which are also subject to TbPM cycles based on 
pre-determined time with time shifts (Source: The author, using TimeNET® simulation results) 

Fig. 5. 3D surface plots of system’s availability as a function of (a) MTTF and TTPM and (b) 
MTTR and TTPM for high-available generic systems undergoing failures and repairs, which are 
also subject to TbPM cycles based on pre-determined time with time shifts (Source: The author, 
using TimeNET® simulation results and MATLAB® 3D graphics)
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5 Discussion 

The verification of the DSPN model has been carried out using the TimeNET®’s Token 
Game module, which confirmed the logical correctness of the proposed model. However, 
the validation process has not been carried out due to the lack of real-world empirical data 
on failure rates, repair times, and preventive maintenance schedules for a real-world sys-
tem for comparison. Besides, the validation of DSPN models is quite challenging because 
they involve random events. On the other hand, conducting real-world experiments to 
validate the model would require monitoring an operational system for a long period, 
gathering detailed maintenance and failure logs, and performing statistical analysis to 
compare observed vs. simulated results, an approach that may not be feasible due to high 
costs, operational risks, and long timeframes. 

Simulation results have confirmed the expected real-world behavior related to sys-
tem’s availability as a feature dependent on variable parameters such as MTTF, MTTR, 
and TTPM. Assuming a constant/fixed MTPM, in the both cases referring to the assess-
ment of generic low- and high-available systems’ availability that alternate between two 
possible states (i.e., operational and non-operational due to failures), which are also 
subject to TbPM that is scheduled at variable time intervals (i.e., TTPM) that can be 
postponed/restarted after the end of each corrective maintenance action (i.e., failure and 
repair), the availability exhibits the following behavior, evident from Fig. 3 and Fig. 5: 

• For fixed MTTF and MTTR, the availability increases as TTPM increases; 
• For fixed MTTR and TTPM, the availability increases as MTTF increases; 
• For fixed MTTF and TTPM, the availability decreases as MTTR increases; 

Fig. 6. Comparison between the achieved availability with and without TbPM for high-available 
generic systems undergoing failures and repairs, which are also subject to TbPM cycles based on 
pre-determined time with time shifts (Source: The author, using TimeNET® simulation results)
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Comparing the results presented in Fig. 4(a) for low-available systems and those 
presented in Fig. 6(a) for high-available systems, it is evident that, despite the bigger 
MTTF step of 5,000 [h] for high-available systems vs. MTTF step of just 50 [h] for 
low-available systems, the relative decrease [%] of availability due to the introduction of 
TbPM with time shifts strategy is bigger with low-available systems, where the values are 
in the range [−0.00028%; −0.774274%], rather than the relative decrease [%] of avail-
ability with high-availability systems, where the values are in the range [−0.02907%; 
−0.04873%]. This is a direct consequence of several factors relevant to low-available 
systems, such as the higher failure frequency, greater sensitivity to additional downtime, 
and stronger effects of time shifts resetting the TbPM cycle. 

Figures 4(b) and 6(b) refer to the nonavailability of low- and high-available systems, 
respectively. As expected, in both cases, nonavailability generally decreases as MTTF 
increases, regardless of whether the system undergoes TbPM with time shifts or it is a 
subject to corrective maintenance only. The nonavailability due to PM is more empha-
sized with low-available systems, where it spans a much wider range as compared to 
high-available systems (i.e., [0.0000028; 0.0074] vs. [0.00029; 0.00049]). This indicates 
a higher relative impact of TbPM with time shifts strategy on low-available systems. For 
high-available systems, the nonavailability due to TbPM remains within a much nar-
rower range, i.e. from 0.00029 to 0.00049, which suggests a lower absolute impact on 
high-available systems. The findings also reveal a counterintuitive trend: the relative 
increase in nonavailability [%] due to introducing TbPM with time shifts strategy is 
significantly greater for high-available systems, where any increase, even if minor in 
absolute terms, magnifies the relative impact. This suggests that while TbPM with time 
shifts remains a viable strategy, its efficiency strongly depends on the system’s reliability 
characteristics. For low-available systems, alternative maintenance approaches might be 
more beneficial to avoid excessive downtime caused by frequent cycle resets. 

6 Conclusion 

This study contributes to the field of PM strategies by modeling and analyzing a DSPN 
framework that incorporates time shifts in TbPM, which represents a novel extension 
beyond traditional maintenance modeling. By capturing the interplay between failures, 
repairs, and dynamic PM scheduling, this approach provides a more realistic representa-
tion of system behavior, emphasizing the power of DSPNs over other alternative method-
ologies due to their ability to simultaneously integrate stochastic failures and repairs, 
deterministic PM, and its time-dependent shifts into a single model. Future research 
directions, among others, include: (a) empirical validation of the DSPN model by con-
duct real-world case studies using historical maintenance data from real-world industrial 
systems; (b) optimization of maintenance policies by developing cost-optimized TbPM 
strategies that balance availability and maintenance costs; (c) extending the current 
DSPN framework to address multi-component or networked systems, where failures in 
one unit may affect others and then analyzing dependency-aware maintenance policies, 
considering cascading failures; and (d) applying the DSPN model to critical infrastruc-
tures to tailor TbPM strategies to industry needs. By addressing these future research 
directions, the proposed DSPN-based approach can evolve into a robust decision-support
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tool, enhancing both theoretical contributions and practical implementations in PM plan-
ning. Overall, this research provides valuable theoretical and simulation-based insights 
into time-shifted PM strategies, offering a solid foundation for future studies and practical 
applications in industries where system uptime is critical. 
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