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Abstract

Permanent ponds are key landscape units that supply various ecosystem services. Notably, the export of
aquatic subsidies to land via emerging insects may significantly influence terrestrial food webs. Polyunsaturated
fatty acids (PUFA), which enhance consumer fitness, are among the essential exported components. The pat-
terns and drivers of dietary exports from ponds via insects remain poorly known, particularly at continental
scales. We analyzed the exports of biomass, lipid, and fatty acid contents from emerging insects, sampled in
36 ponds across 11 European countries, from 36°N to 59°N and from 26°W to 19°E, over four seasons. We
found that biomass and fatty acid exports decreased with increasing latitude and were higher in spring and sum-
mer. Seasonal effects also increased with higher latitudes. Temperature was the most important predictor of
insect biomass, explaining 27.6% of the total variation and showing an unimodal response. Thus, increasing
temperature may promote exports in colder regions and seasons but may negatively influence biomass exports
in already warm regions. The exports of total lipids, PUFA, and eicosapentaenoic acid were correlated to
exported biomass, while those of docosahexaenoic acid were linked to the emergence of Chaoboridae. Our find-
ings indicated that PUFA contents were affected by taxonomic insect community composition and pond tro-
phic state (indicated by chlorophyll a). Two of the correlates identified here (temperature and trophic state) are
influenced by anthropogenic activity via climate and land use change, respectively. Thus, human activity
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impacts the food webs in and around ponds by influencing the quantity and quality of nutritional exports.

Organic matter and nutrient fluxes across space are impor-
tant for ecosystem functioning (Barnes et al. 2018), with vec-
tors ranging from desert dust (Prospero et al. 2020) to
emerging insects (Martin-Creuzburg et al. 2017). Reciprocal
subsidies are critical for both terrestrial and aquatic food webs
(Nakano and Murakami 2001); but exports from small water
bodies, such as ponds, have largely been overlooked
(Fehlinger et al. 2023a). This limits our understanding of the
impacts of pond ecosystems on the surrounding landscape
(but see Lewis-Phillips et al. 2020; Fehlinger et al. 2023b).

Ponds, that is, small shallow water bodies (< 5ha, <5 m
depth) with less than 30% emergent vegetation (Richardson
et al. 2022), are key ecological landscape components,
supporting biodiversity, providing valuable ecosystem services
(Hill et al. 2021), and producing large quantities of insect bio-
mass (Dalal and Gupta 2016; Fehlinger et al. 2023b) contribute
significantly to the diets of many terrestrial consumers, such as
birds (25%-100%; Baxter et al. 2005; Bartels et al. 2012), bats
(Frank et al. 2012), or spiders (Fritz et al. 2017).

Aquatic subsidies generally provide higher nutritional qual-
ity, energy density, and nutrient concentration than terrestrial
ones, despite often being lower in quantity (Bartels
et al. 2012; Twining et al. 2019; but see Twining et al. 2025).
This is largely due to the prevalence of key biomolecules, such
as long-chain polyunsaturated fatty acids (LC-PUFAs) in
aquatic organisms (Napolitano 1999; Hixson et al. 2015).
Long-chain polyunsaturated fatty acids are essential com-
pounds that support the overall fitness and immune function
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of consumers (Brett and Miiller-Navarra 1997; Fritz et al.
2017). Omega-3 (03) LC-PUFAs, such as docosahexaenoic acid
(DHA) or eicosapentaenoic acid (EPA), and arachidonic acid
(ARA; an omega-6 [06] LC-PUFA) are particularly important
for brain function and size (Zavorka et al. 2022), inflammatory
responses (Tocher 2003) and metabolism (Pilecky et al. 2021).
These biomolecules are primarily produced by microalgae
(Napolitano 1999). Aquatic insects, like most metazoans, can-
not synthesize LC-PUFAs de novo and rely on dietary uptake
(Malcicka et al. 2018; Gladyshev et al. 2013).

While the quantity of PUFA export mainly depends on
insect biomass (e.g., Scharnweber et al. 2020; Fehlinger
et al. 2023b), the PUFA composition varies with taxonomic
composition (Parmar et al. 2022) due to differences in feeding
strategy and/or fatty acid (FA) metabolism (Guo et al. 2018).
Among aquatic insects, Ephemeroptera and Chaoboridae have
high nutritional quality as they contain particularly high
levels of EPA and DHA, respectively, compared to other
common taxa such as Chironomidae and Trichoptera (Parmar
et al. 2022; Martin-Creuzburg et al. 2017). Therefore, factors
shaping aquatic insect community structure, such as predator
presence, resource availability, water chemistry, and
waterbody morphology (Biggs et al. 2005; Cereghino et al.
2008; Becerra Jurado et al. 2009), are also expected to affect
PUFA contents in aquatic insect exports.

Environmental factors, such as nutrient loading, tempera-
ture, and land use, also affect PUFA content within aquatic
insect taxa and influence transfers to terrestrial ecosystems
(Nash et al. 2023; Scharnweber et al. 2020). For instance,
eutrophication could reduce Omega-3 LC-PUFA transfer in
food webs due to increasing dominance of low-quality algae
and cyanobacteria (Taipale et al. 2016; Miiller-Navarra et al.
2000). Furthermore, increasing temperatures might reduce
PUFA content in aquatic insects, as with other ectotherms,
due to homeoviscous adaptation (Hixson and Arts 2016; Holm
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et al. 2022). Temperature is also a key driver of insect phenol-
ogy (e.g., Bonacina et al. 2023), where climate change is driv-
ing timing mismatches between emerging insects and
insectivorous birds (Shipley et al. 2022). Additionally, different
forms and intensities of land use can affect PUFA export to
adjacent terrestrial ecosystems by driving spatiotemporal vari-
ation in community composition and phenology (Ohler
et al. 2024), and influencing cross-system food web dynamics.
For example, intensified agriculture has been linked to increas-
ing trophic state of ponds (Usio et al. 2017), and increased
eutrophication and browning can limit LC-PUFA availability
in aquatic food webs by causing shifts in phytoplankton com-
munities and trophic interactions (Miiller-Navarra et al. 2000;
Taipale et al. 2016; Senar et al. 2021). Gaining further insights
into the amounts and quality of PUFAs exported via emerging
insects and the variations of exports along spatial, seasonal,
and land-use gradients is crucial to gauge the stability of this
high-quality resource for terrestrial ecosystems.

We aimed to advance the understanding of the spatio-
seasonal variation in PUFA and insect biomass exports from
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permanent ponds across Europe, along a broad latitudinal and
longitudinal gradient, ranging from 36°N to 59°N and from
26°W to 19°E. We quantified emerging insect biomass exports
and analyzed their total lipid and specific FA content.

We hypothesized that (i) temperature will drive biomass
export, with higher exports in warmer seasons and at lower
latitudes; (ii) trophic state will affect the quantity and quality
of exports, leading to increased biomass and FA exports with
higher productivity, but resulting in lower LC-PUFA content
per unit of biomass due to reduced algal quality. Trophic state
is also related to land use (Usio et al. 2017) which is expected to
impact the quantity and quality of FA exports, since we expect
distinct communities in ponds in near-natural compared to
urbanized environments. We expect higher emerging biomass
in urban and agricultural surroundings, associated with nutri-
ent pollution, and less in forested areas. In contrast, we expect
a lower PUFA content in emerging insects from agricultural and
urban contexts than forested and open natural areas, due to
expected differences in basal resource quality; and (iii) we
hypothesize that taxonomic composition is a key driver of FA
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Fig. 1. Distribution of the study ponds (n = 36), dot color corresponds to altitude, Pond IDs consist of team number, p for pond, number of sampled
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composition of aquatic insect exports, where the abundance of
key taxa disproportionately affects the exports to land.

Materials and methods

Study sites and land use categorization

Our studied sites included 36 ponds across 11 European
countries (Fig. 1), covering a wide range, from southern Spain
to Sweden and from the Azores to Poland. The climatic con-
ditions show considerable variability, from a Mediterranean
climate in the south with hot summers and mild, wet win-
ters to a temperate climate in the north with cooler temper-
atures and more rainfall, influenced by the Atlantic Ocean
in the western part. The eastern countries have a more con-
tinental climate with cold, snowy winters and warm
summers.

In each country, one to seven ponds were chosen for sam-
pling on the basis of water permanence, depth, and accessibil-
ity, with all ponds permanently flooded and with a maximum
depth of 3 m (Supporting Information Tables S1, S2). The
ponds were mostly of artificial origin, different ages, and were
located at different altitudes (Supporting Information Tables S1,
S2; Fig. 1). Observations confirmed fish in two thirds of the
studied ponds (Supporting Information Tables S1, S2). Land
use in the pond-adjacent area ranged from fully forested to
entirely agricultural or urban (Supporting Information
Fig. S1; Supporting Information Table S2), based on the
Corine Land Cover (CLC) 2018 database (scale 1:100.000;
EEA 2018) within a 100 and 1000 m buffer (radius) from the
pond centroid (Thornhill et al. 2017). A detailed description
of the reclassification of CLC categories and the PCA used
to summarize gradients is available in the Supporting Infor-
mation Methods.

Emerging insects sampling

We sampled from autumn 2020 to summer 2021 once in
each season (n = 4 seasons). Aquatic emerging insects were
collected twice within 1 week at 3-d intervals and then
pooled, reflecting the cumulative insect emergence over
6 d. Emerging insects were caught using pyramid-shaped
floating emergence traps, consisting of a net (~ 500 ym)
fixed to a PVC-pipe structure and crowned by an external
collection bottle (Supporting Information Fig. S2; Cadmus
et al. 2016). To maximize the representativeness of insect
samples, emergence traps were intentionally deployed to
cover all potential pond habitats, with one to three traps
covering a total surface of 0.54 to 3 m? The traps were
manually emptied on Days 3 and 7 after deployment to
ensure that samples were not too degraded for biochemical
analysis. Upon arrival in the laboratory, samples were fro-
zen (at or below —20°C) and freeze-dried for analysis. The
emerging insects were identified under stereo-microscopes
using national or regional-level identification keys to the
lowest possible taxonomic level and then wunified to
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Order level prior to analysis for consistency (literature selec-
tion in Supporting Information). Orders contributing < 5%
biomass were grouped together as “Others” (Supporting
Information Table S3). From the maximum 144 samples
that could potentially be obtained from 36 ponds, we
were able to measure aquatic insect biomass from
118 samples including frozen ponds that were assigned a
0 emergence (Supporting Information Table S4). Of these
samples, we were able to analyze lipid and FA exports from
101 and FA contents from 89 sites after excluding the
12 ponds that were frozen (Supporting Information
Table S4).

Environmental data collection and parameter selection

During each sampling event, conductivity, oxygen satura-
tion, pH, water temperature, and transparency (Secchi depth)
were measured. Additionally, visual assessments of substrate
heterogeneity were conducted, and the percentage of surface
covered by submerged and emergent macrophytes was
recorded (Supporting Information Table S2). Weather data
was recorded for the sampling day and three preceding days,
and fish presence was noted at each site (Supporting Informa-
tion Tables S1, S2). Chlorophyll a (Chl a) concentration was
measured either in situ or in the lab. Temperature, Chl a, con-
ductivity, and fish presence were retained in the analyses as
the most likely bottom-up and top-down drivers of insect
abundance with the least missing values combined
(Supporting Information Table S2).

Fatty acids analysis and sample selection

Fatty acids were extracted from 280 taxon-specific sam-
ples across 89 pond-season combinations (Supporting Infor-
mation Tables S3, S4) following Heissenberger et al. (2010),
described here briefly and detailed in Supporting Informa-
tion Methods. Total lipid (TL) extracts were weighed before
and after evaporation, and a portion was trans-methylated
and analyzed by gas chromatography. Some samples had
insufficient mass for analysis (< 2 mg dry weight [DW]). To
prevent the removal of these ponds, we extrapolated the TL
and FA content of those samples from the TL and FA means
in the entire dataset. This is based on the assumption that
the majority of FA export variability is driven by differences
in quantities of biomass exported (Martin-Creuzburg
et al. 2017; Scharnweber et al. 2020). The extrapolation
affected 33 samples, where the mean contribution of the
extrapolated amounts per sample was 2.9 + 2.4% of the TL
exports and less than 1% for the different FA exports, which
is much lower than the spatio-seasonal variation in lipid
and FA exports (Supporting Information Table S5; means
and SD). By accepting this low extrapolation error, we
avoided the reduction of 37% of our data points for statisti-
cal analysis.
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Biomass and export quality calculations

The omega-3/omega-6 PUFA ratio (#3/w6) was used as a
proxy for the quality of FA composition. The biomass
export rate (mg m 2 d~') from each pond during a specific
season was calculated according to Eq. 1. The ratio of lipids
in exports, that is, lipid content (mg g~* biomass), was cal-
culated according to Eq. 2, and the percentage contribution
of individual lipids and FAs was calculated as detailed
in Eq. 3.

Biomass export rate = DW inmg/ (area sampled in m?

1
xnumber of days), <mgm’2 dfl) M

Lipid content = lipid mass in mg/biomass in g of DW, (mgg~' DW)
(2)
Taxon x Lipid/FA contribution (%)
=1lipid/FA x export <mg m2 d_1> (3)
/total lipid export (mg m~2 d”) x 100

Exports (mgm 2d!) and contents (mg g~' DW) were
logi0(x) transformed; for export variables including zeroes, we
used a logio(x + 0.1%)-transformation i, where i was chosen
based on the order of magnitude of each variable: biomass
export (i=1), TL export (i =2), PUFA export (i =4), EPA
export (i =4), DHA export (i =35), DHA content (i =2). All
numerical explanatory variables were standardized by center-
ing them around the mean and dividing them by their stan-
dard deviation, that is, z-scores. For statistical analyses, the
following response variables were used: biomass (mg m~2 d~?,
see Eq. 1), total FAs (TFA, see Eq. 2), and total lipids (TL, see
Eq. 3) per pond and per sampling season. In addition, we
investigated the drivers for specific FAs (e.g., EPA) and total
PUFAinmgg .

Statistical analysis of export drivers

To test the effects of spatial, seasonal, and environmental
drivers on biomass and FA export quantities, linear mixed
effect models (LMM) were fitted (restricted maximum likeli-
hood), with pond ID as a random factor. Fixed effects included
spatial (latitude, elevation) and seasonal gradients based on
118 data points from 36 ponds: latitude, season, Chl a, tem-
perature, fish presence, land use (exported PCA axes), and
pond size (see Supporting Information Methods for full model
structure). Highly correlated variables (Supporting Information
Fig. S3) were excluded, and interaction terms were tested
(Supporting Information Methods). The non-linear responses
of biomass exports to environmental drivers (i.e., temperature,
Chl g, and land use, as summarized by the PCA axes) were
assessed by using LMMs with quadratic terms (Supporting
Information Table S6 for model equations and results;
Supporting Information Methods).

Large scale fatty acid exports via pond insects

Models were selected following the AIC criterion, whereby
AAIC <2 indicates “substantial” support (Burnham and
Anderson 2002), and the contributions of variables were
assessed by calculating semi-partial R estimates. Residual diag-
nostics and multicollinearity were checked to ensure model
assumptions were met (Supporting Information Methods).
Additionally, we tested the predictive power of biomass on
lipid and FA exports by running linear regressions fitted by
ordinary least squares (OLS), with biomass export as a predic-
tor of TL, PUFA, EPA, and DHA (n = 89), and Chaoboridae bio-
mass as a predictor of DHA exports (Supporting Information
Methods), and by inspecting the coefficient of determina-
tion (R?).

We defined the nutritional quality of export as the con-
tents of lipids, PUFA, EPA, and DHA per unit of exported bio-
mass (mg g~ DW) and as the w3/w6 PUFA ratios. To test for
taxonomic differences, we used LMMs with taxon group as a
fixed effect, followed by post-hoc tests for pairwise compari-
sons (Supporting Information Methods). Further, we investi-
gated FA export quality variations using redundancy analysis
(RDA) based on total biomass and environmental predictors
(water temperature, fish presence, pond size, conductivity,
Chl a, and the first two principal components of land use
(n = 74)). Finally, we used LMMs to assess the effects of taxo-
nomic and environmental drivers on the quality of exports
(Supporting Information Methods). All statistical analyses
were carried out in R (R Core Team 2022).

Results

Biomass, total lipid, and fatty acid exports

Biomass exports via emerging insects were variable among
ponds across Europe (Supporting Information Table S7) and
within ponds across seasons (Supporting Information
Table S5). They ranged from 0 mg DW m2d~! in autumn
and winter at high latitudes, where many ponds were frozen,
to 208.2 mg DW m 2d ! in a productive pond during sum-
mer (Supporting Information Table S7). Lipids accounted for
on average 14.9% (+ 6.2 SD) of the biomass exports, whereas
PUFAs represented 2.63% (£ 1.3 SD) (Supporting Information
Table S8). Exports of EPA reached up to 2.95 mg DW m2d?,
while DHA exports were more than one magnitude lower
(Supporting Information Table S7) and below detection limits
in 15 of the 89 pond-per-season samples used for FA analysis.
On average, »3 exports from our ponds were higher than w6
exports (3/w6 > 1; Supporting Information Table S7), and the
®3/w6 ratio varied greatly among ponds (range 0.6-2.6), but
not among seasons (Supporting Information Tables S7, S8).

Drivers of export quantity

Spatial and seasonal predictors (latitude, altitude and sea-
son) explained 50.2% of biomass export variation (R?y), with
significant effects of season and latitude but not of altitude
(Table 1a). Season explained the vast majority of the biomass
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Table 1. Results of the mixed-ANOVA run for linear mixed effects models. Pond ID was used as a random intercept, and biomass

export was the tested response variable.

(a) Spatio-temporal model with interactions (n = 118)

AIC = df. F-statistic p-value R? (semi-partial) R? (model)
Season 3,82 29.85 < 0.001 0.360 R?., = 0.502
Latitude 1,29.4 13.39 0.001 < 0.001 R?.=0.534
Altitude 1, 35.9 2.11 0.155 < 0.001
Season * Latitude 3,80.4 6.09 0.001 0.077
Season * Altitude 3,83.2 1.07 0.366 0.012
(b) Environmental drivers model (n = 90)

d.f. F-statistic p-value R? (semi-partial) R? (model)
Water temperature (x + x°) 1,829 20.14 <0.001 0.276 R%,, =0.385
Chlorophyll a 1,62.4 0.16 0.693 0.002 R’.=0.413
Fish presence 1,242 0.13 0.724 0.003
Conductivity 1,234 6.68 0.016 0.037

exports (36.0%, semi-partial R% Table la), showing higher
exports in spring and summer (Tukey HSD in model without
interactions, p < 0.001, Fig. 2a). Latitude had an overall nega-
tive effect on biomass exports (Table 1a; Fig. 2b). However,
the effect of latitude was dependent on season (significant sea-
son: latitude interaction; Table 1a) with steeper slopes in win-
ter than in spring (Awinterspring = —0.15 & 0.06, p = 0.046)
and summer (Awinter-summer = —0.24 £ 0.06, p < 0.001). Note
that there are more zero values in winter since many ponds
were frozen (Fig. 2a, b; Supporting Information Table S7).
This season: latitude interaction term explained 7.7% of the
variation in biomass exports (semi-partial R*; Table 1a). Sin-
gle linear models per season showed decreases in biomass
exports with latitude in winter (slope = —-0.18 £ 0.04,
Fi.8=23.8, p<0.001, R>=0.46) and autumn (slope =
—0.11 £ 0.04, F,,4=6.3, p=0.016, R>=0.21), while no
significant trends were found in spring (slope =
—~0.05+0.04, Fy3;,=1.8, p=0.18, R*=0.06) or summer
(F127=0.8, p=0.38, R* = 0.03).

In the study of the environmental drivers of the biomass
exports, the model including bottom-up drivers (water tem-
perature, Chl a), top-down drivers (fish presence), and water
chemistry (i.e., conductivity) was the best fit model
(Supporting Information Table S6). Water temperature
explained most of the variation (27.6%; semi-partial R>;
Table 1b) and had a significant quadratic relationship
(R?,, = 0.385, p <0.001; Fig. 2¢; Table 1b). Neither Chl a, as a
proxy for trophic status, nor fish presence significantly
affected the biomass exports (Table 1b). Conductivity, on the
other hand, had a significant positive effect on biomass
exports (Fig. 2d), explaining 3.7% of the variability (semi-
partial R p < 0.05; Table 1b).

Biomass significantly explained the majority in emerging
insect exports variation of TL, PUFA, and EPA per sampling,
and was a highly significant predictor for DHA exports

(p <0.001; Supporting Information Table S9). However, the
predictive power of biomass to DHA export was lower than
other lipid exports investigated (R* = 0.66; Supporting Infor-
mation Table S9). Including Chaoboridae biomass in the
regression model increased the goodness of fit of the model
by 10% (R* = 0.76, intercept = —7.87 + 0.30, slopepiomass =
0.84 £ 0.06, slopechaoboridae = 0.83 £0.12, p < 0.001). When
Chaoboridae were present, Chaoboridae biomass export
predicted 82% of the variation in pond DHA exports
(R? = 0.82, intercept = 5.62 + 0.26, slope = 1.15 + 0.16).

Taxon-specific contributions to fatty acid exports

Lipids and FAs content differed significantly among taxa
(Fig. 3; Supporting Information Fig. S4; Supporting Informa-
tion Table S10). Ephemeroptera contributed the most to TL
(41.1%), PUFA (42.7%), omega-3 (45.2%), omega-6 (39.1%)
and EPA (33.7%) exports, despite contributing less to
exported biomass (19.5%, Fig. 3; Supporting Information
Table S3). On the other hand, Chironomidae had a high
contribution to biomass exports (48.1%), but lower contri-
butions to TL exports (13%-32%, Fig. 3; Supporting Infor-
mation Fig. S4). Docosahexaenoic acid exports were highly
dependent on Chaoboridae midges (57.2%) despite lower
biomass contribution (4.9%; Fig. 3). Other taxa contribut-
ing > 10% of the DHA exports were Ephemeroptera (21.3%)
and Chironomidae (13.7%) (Fig. 3). Note that the high con-
tribution of Ephemeroptera to DHA export is only based on
one sample (Fig. 3).

Drivers of export quality

Environmental variables (water temperature, fish presence,
pond size, Chl a, conductivity and land use) explained 14.7%
of the variation in the community composition (RDA;
Supporting Information Table S11). Only water temperature
significantly contributed to the RDA model (Fig. 4;
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Supporting Information Table S11) and explained 4.58% of
the variation, while the proxies for urbanization and agri-
cultural land use were marginally significant (Supporting
Information Table S11). Agricultural and urban land use
proxies were positively correlated with the relative biomass
of Chironomidae. Likewise, forest land use, denoted by a
negative PC1_urban, was correlated to the occurrence of
Chaoboridae and “Others” (Fig. 4; Supporting Information
Table S11).

In our analysis for main drivers of lipid and FA contents in
the emergence (as mgg ' biomass), we found that TL

contents and PUFAs were positively associated with a higher
relative biomass of Ephemeroptera in the emerging insect
community. For EPA, we found positive effects of the contribu-
tion of Ephemeroptera, Chaoboridae, and Odonata, which were
high in EPA contents (Table 2; Fig. 3; Supporting Information
Fig. S4). The models also suggested a significant positive effect
of Chironomidae contribution, even though this taxon gener-
ally did not have high EPA contents (Table 2; Fig. 3; Supporting
Information Fig. S4). Further, ®3/w6 ratios of the exports were
positively affected by the dominance of Ephemeroptera and
Odonata (Table 2), while most of the DHA contents were
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positively related to the relative Chaoboridae biomass (Fig. 3;
Supporting Information Fig. S4). After accounting for the effects
of taxonomic composition, we also found significant effects of
environmental drivers (such as Chl a) on PUFA and EPA con-
tents of the exported biomass (Table 2).

Discussion

Our study represents the first comprehensive investigation
at a continental scale of the quantity and quality of emerging
insect exports, considering both spatial and seasonal dynam-
ics. Overall, it highlights the importance of climate and com-
munity composition in driving aquatic insect lipid exports to
land. As hypothesized, insect biomass exports increased with
temperature and decreased with latitude across Europe, con-
firming global emergence patterns associated with latitude
and climate (Nash et al. 2023); and local patterns connecting
emergence and water temperatures (Lewis-Phillips et al. 2020).
Yet, the unimodal response of emergence to water tempera-
ture suggests non-linear temperature responses: Colder regions
and seasons may benefit from warming conditions, while
warmer regions and seasons may be negatively affected by
temperatures past the 20°C optima on to the 25°C threshold
(Fig. 2¢). Unlike hypothesized, higher Chl a, as a proxy for
algal biomass, did not significantly impact insect biomass, FA
quantity, or quality. Instead, community composition played
a larger role for specific FA exports, particularly the occurrence
of LC-PUFA-rich taxa such as Ephemeroptera and
Chaoboridae. This taxonomic dependency highlights the
importance of insect community composition in delivering
nutrients from permanent ponds to the terrestrial environ-
ment across Europe.

Large scale fatty acid exports via pond insects

Spatio-seasonal patterns in aquatic insect exports

Overall, the highest biomass exports occurred in spring and
summer, in line with previous studies (Nakano and
Murakami 2001; Uesugi and Murakami 2007). Our biomass
exports in summer (21.6 + 45.7 mg DW m 2d ') are compa-
rable to those reported from eutrophic fish ponds in Austria
and from managed farm ponds in the UK in the same season
(~13.6 mg DW m ?d"!, Fehlinger et al. 2023b, and 52 mg
DW m~2 d~!, Lewis-Phillips et al. 2020, respectively). They are
also comparable in magnitude to exports from lakes or rivers
(Gratton and VanderZanden 2009; Bartels et al. 2012). It is
important to note that our sampling campaigns were not
timed to capture emergence peaks, so we likely under-
estimated the exported biomass and FAs in our dataset. These
peaks could in the future be monitored using novel technolo-
gies implementing remote sensing and automated insect
detection and identification, which would help follow the
developments of emergence peaks, particularly in times of cli-
mate change where such temperature-controlled events are
expected to change (e.g., Roy et al. 2024; Shipley et al. 2022).

Interestingly, the effect of season varied with latitude, with
increasing seasonal export variation at higher latitudes, in line
with results from a global emergence meta-analysis, and
potentially related to seasonality in temperature and precipita-
tion (Nash et al. 2023). In our dataset, pronounced seasonality
at higher latitudes was caused by frozen ponds in winter, for
example, in Sweden or the Czech Republic. Emerging aquatic
insects can enter diapause during the ice-cover period of
ponds to optimize emergence timing for reproduction
(Lencioni 2004). Such differences in the seasonality within
the continent can have important ecological implications for
terrestrial consumers, because aquatic insects are a temporary
high-quality resource (Twining et al. 2019; Parmar et al.
2022). Therefore, climate change-induced decoupling between
the timing of emergence and the demand of terrestrial con-
sumers could lead to negative consequences throughout the
entire food web (Shipley et al. 2022).

Taxonomic contributions to fatty acid exports

Almost 50% of exports in our entire dataset were made up
of Chironomidae, similar to other freshwater systems (Baxter
et al. 2005; Martin-Creuzburg et al. 2017). While Ephemeroptera
(~ 20%), Odonata (~ 16%) and Chaoboridae (~ 5%) made up
smaller portions of the total biomass exported, their contribu-
tions to the overall FA exported were considerable, particularly
regarding DHA exports, which were mainly explained by
Chaoboridae biomass. In general, Ephemeroptera and Chao-
boridae contained the most EPA and omega-3 PUFA,
highlighting the importance of diverse communities for the
export of dietary nutrients (Shipley et al. 2024) and emphasiz-
ing the ecological role of different taxa in terms of their FA
profiles (Parmar et al. 2022). Still, a large fraction of lipid and
FA analyzed was predicted by biomass. Thus, the effect of
quality (i.e., community composition and FA composition) on
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FA and lipid exports is smaller compared with the effect of
quantity (i.e., emerging biomass).

Environmental drivers of biomass and fatty acid exports
Contrary to our hypothesis relating the trophic state of
ponds to exports, neither Chl a nor fish presence seemed to
impact biomass exports in our study. This contrasts with the
strong negative effects of fish presence and the overall positive
effects of nutrient levels on biomass and FA exports by aquatic
insects in experimental mesocosms (Scharnweber et al. 2020).
It might suggest that the effects of those factors are weaker in
complex real-world ecosystems than in a controlled environ-
ment; however, the absence of detailed data on fish communi-
ties calls for caution in interpreting their impact (Tweedy
et al. 2013). Further, while Chl a is a widely used proxy for
productivity, it strongly fluctuates throughout seasons, and
reliable relations between nutrient concentrations and Chl
a might only be deductible from long-term observations
(Davidson et al. 2023). We were not able to measure nutrient

levels directly, but as electric conductivity can be driven by
dissolved nutrient ions, the positive effect of conductivity on
emergence may have reflected the expected effect of trophic
state (Mamun 2025).

With regards to the effect of environmental drivers on
export quality (i.e., lipid contents mg g™'), we found positive
effects of Chl a on PUFA and EPA contents in aquatic insect
exports. We did not find any direct effects of land use on lipid
or FA contents in exports, opposite to our second hypothesis.
Eutrophication has been linked to limited LC-PUFA in aquatic
food webs (Taipale et al. 2016; Senar et al. 2021) and lower
®3-PUFA due to phytoplankton community shifts (Miiller-
Navarra et al. 2000), while land use has been known to affect
PUFA exports (Ohler et al. 2024). Such discrepancies may arise
from our analysis controlling for other variables, meaning that
eutrophication and land use effects may be indirect through
other drivers, such as community composition. Similarly, we
found no direct effect of temperature on PUFA, suggesting
that the effects of homeoviscous adaptation cannot be
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Table 2. Linear mixed effects models predicting export quality (as contents of different lipids and w3/w6 ratios) based on taxonomic composition (% biomass) of

main taxa (Ephemeroptera, Chaoboridae, Chironomidae, Odonata), environmental variables (water temperature, chlorophyll g, conductivity) and principal compo-

nents of land use (PC1_urban, PC2_agriculture), with pond ID as a random intercept. For each of the variables, the table shows the model estimate and significance
(p < 0.05% p <0.01*; p<0.001**), significant values are highlighted in bold. The marginal (R%,,) and the conditional (R?.) coefficients of determination represent

the proportion of the variation explained by the fixed effects and the whole model, respectively.

PC2

Pond PC1

Fish

Water
Intercept Ephemeroptera Chaoboridae Chironomidae Odonata temperature Chlorophyll-aConductivity presence size urbanagriculture R%, R’

0.2560.646

—0.01
-0.10
—0.01
-0.12
—0.06

-0.03-107*

—0.06
—-0.26

—0.07
—0.04

0.06

—0.12*
—0.09
—0.05
—0.09

—0.09

0.09

—0.05

0.07
0.07

0.12*
0.1

4.97%**

TL(mgg ™)

0.3310.556
0.1910.534
0.3070.427

—0.09 —0.03

0.16**
0.1

0.14*
0.03

3.29%** 0.22%**

0.17

PUFA (mg g™")
w3/w6

—0.03 —-0.02
—0.09 —-0.09
-0.14 0.1

0.05
0.23
-0.52

0.12
0.03
0.17

1

0.17*

0.14*

0.16*
0.24

0.28** 0.24**
0.

0.16*

0.28**
—0.01

1.84%

EPA(mgg™")

0.4390.633

0.39* 0.16

32

0.83***

DHA (mg g™') —2.37***
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detected at these taxonomic and geographical scales. Further
investigations are necessary to better understand the direct
environmental drivers of lipid contents of insect exports at
large scales.

Anthropogenic impact on biomass and fatty acid exports
from ponds

On a continental scale, the ongoing pond habitat losses
due to agricultural drainage and/or climate-induced droughts
are expected to continue, further reducing emerging insect
abundance and impacting terrestrial consumers (Berzins
et al. 2021; Jonsson et al. 2015). Climate change is amplifying
multiple stressors on ponds due to their greater vulnerability
compared to larger water bodies, for example, changes in rain-
fall, conductivity, land use, and temperature fluctuations
(Diaz-Paniagua and Aragonés 2015; Jonsson et al. 2015).
Together, those could result in a drastic reduction in FA
exports. We found a positive influence of conductivity on bio-
mass exports, which had previously been linked to increased
agriculture, thus connecting land use and water conductivity
levels (Kupiec et al. 2021). While we did not find a direct influ-
ence of land use on the FA exports, we found a positive corre-
lation between increasing agriculture, urbanization, and
Chironomidae biomass, similar to Ohler et al. (2024). Given
the links between land use changes, climate, and community
composition of aquatic insects, the vulnerability of these
essential resources becomes evident. Qualitative and quantita-
tive changes in emerging aquatic prey can initiate cascade
effects throughout the terrestrial food web, affecting local
diversity but also ecosystem functioning (Murakami and
Nakano 2002; Dreyer et al. 2016; Osakpolor et al. 2023). Pond
management, creation, and restoration actions are viable
options to safeguard higher insect biomass exports that sup-
port a higher abundance and species richness of birds and
other riparian consumer species (Lewis-Phillips et al. 2020).

Conclusion

Overall, this study highlights the pivotal role of ponds in
distributing essential resources across a broad geographical
scale, thereby emphasizing their significance as fundamental
ecosystems within the landscape. The strong influence of tem-
perature on export quantity suggests that these exports are
highly susceptible to rising temperature and increasing tem-
perature fluctuations (i.e., heat waves, cold waves), which are
in line with climate change predictions (IPCC 2023). Further-
more, the effects of insect community composition on the
nutritional quality of the emergence suggest that the preserva-
tion of key taxa in ponds, such as Chaoboridae and
Ephemeroptera, is key to providing high-quality Omega-3 LC-
PUFA to terrestrial consumers. Therefore, our study highlights
the importance of preserving aquatic insect biodiversity to
have high-quality exports to terrestrial ecosystems.
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