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Abstract: 
The paper focuses on concurrency and parallelism, two closely related concepts in computer 
architecture that deal with how tasks are executed simultaneously, though that they differ in 
their underlying mechanisms and objectives. Utilizing the class of Generalized Stochastic 
Petri Nets (GSPNs), this study proposes four distinct Petri Net-based models to capture the 
behavior and logic of all possible combinations of these two concepts with a single aim to 
clarify and explain them. Despite their straightforwardness, the resulting generic models can 
serve as blueprints that can be applied to simulate, design, optimize, and verify systems that 
rely on concurrency and parallelism, thereby enhancing both theoretical understanding and 
practical implementations of such systems. 
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1. Introduction 

The concepts of concurrency and parallelism have long histories in the development of computer 
science and computer architecture, since both concepts begun developing in the 1960s [1]. 
Concurrency was driven by the need for time-sharing and multiprogramming systems [2], while 
parallelism was advanced by the development of multi-threaded and multi-core processors [3]. Both 
paradigms have led to the development of distributed computing, supercomputers and high-
performance computing systems. 

In computer science, concurrency and parallelism refer to entirely distinct concepts, even though 
they are often used interchangeably. Rob Pike, one of the inventors of the Go programming language, 
in one of his excellent talks said: “Concurrency is about DEALING with lots of things at once. 
Parallelism is about DOING lots of things at once.” According to him, this distinction emphasizes 
that concurrency is more about the design or structure of a program, whilst parallelism is about the 
execution of programs, having minded that concurrency enables parallelism and makes it easy [4] [5]. 
Parallelism involves the use of multiple CPU cores, with each core executing a task independently. 
Conversely, concurrency allows a program to manage multiple tasks even on a single CPU core by 
switching between tasks (or threads) without necessarily completing each one before moving to the 
next. A program or system can exhibit characteristics of parallelism, concurrency, neither, or a 
combination of both [6]. 

A system is considered concurrent if it can handle multiple actions simultaneously or in progress at 
the same time [7], allowing computation to proceed without waiting for others to complete [8]. 
Concurrency enables a program to manage multiple tasks on a single CPU core by interleaving 
execution, switching between tasks without finishing each one before moving on. It involves 
structuring a program so tasks can progress without necessarily being executed at the same time, 
utilizing techniques like time-slicing. Concurrency is about handling many tasks at once and allows 
for components of a program or problem to be executed in any order, enhancing speed, particularly in 
multi-core systems [9]. Even on a single-core CPU, concurrency is achieved through rapid task 
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switching. It refers to the structure and scheduling of tasks, ensuring they can progress logically at the 
same time, regardless of actual simultaneous execution [10]. 

Parallelism refers to the simultaneous execution of multiple processes or threads, improving 
computational speed by utilizing multiple processors or CPU cores to work on different parts of a task 
[11]. It requires multicore or multithreaded CPUs to execute tasks or subtasks at the same time [12], 
and can occur at various levels, such as instruction-level and data-level parallelism [13]. A parallel 
system supports the execution of multiple actions simultaneously, with each core performing a task 
independently [7]. The essence of parallelism is about doing tasks simultaneously, requiring multiple 
CPU cores or processors. 

Despite their long history, concurrency and parallelism remain central to modern research and 
practice in computer science, particularly in computer architecture, due to ongoing challenges and 
evolving demands. These include the rise of multi-core processors, high-performance computing, 
scalability, energy efficiency, real-time systems, embedded and distributed system design, cloud 
computing, and new programming models for AI, machine learning, and deep learning systems. 

By revisiting those two paradigms, the aim of the paper is to clarify and emphasize their 
differences by proposing four generic, yet quite simple simulation models based on the utilization of 
the class of Generalized Stochastic Petri Nets (GSPNs). However, it is worth noting that beyond Petri 
Nets and their various extensions (e.g., Colored Petri Nets for modeling data-dependent concurrency, 
Timed Petri Nets for modeling real-time concurrent systems), various other formalisms, tools, and 
approaches have been developed to model concurrency and concurrent computing. These alternatives 
differ in their treatment of concurrency, synchronization, and inter-process communication. Among 
others, some of the most prominent alternatives include Process Calculi (Calculus of communicating 
systems, Communicating Sequential Processes − CSPs, π-calculus), the Actor Model, State Machines 
and Automata (Finite State Machines, Timed Automata), Programming Models (Thread-based 
Models, Message-Passing Models, and Dataflow Models), the Parallel Random-Access Machine 
(PRAM), Bulk Synchronous Parallel (BSP) model, as well as various software tools and 
programming languages, such as Simple Concurrent Object-Oriented Programming (SCOOP) and the 
programming languages Go (Golang) and Haskell. On the other hand, there are also alternative 
approaches that are used to model parallelism and parallel computing, which focus on representing, 
analyzing, and optimizing parallel tasks, communication, and execution in multi-core and distributed 
environments, such as Parallel Programming Models (Message Passing Interface – MPI, OpenMP, 
CUDA), Dataflow Models (Kahn Process Networks, Stream Processing), Graph-Based Models 
(Directed Acyclic Graphs – DAGs, Task Graphs in OpenCL), Formal Parallel Models (Parallel 
Random-Access Machine – PRAM, Bulk Synchronous Parallel (BSP) Model), and High-Level 
Parallel Languages and Libraries (Chapel, Cilk, Threading Building Blocks – TBBs). 

The structure of the paper is as follows: Section 2 offers a concise overview of the class of 
Generalized Stochastic Petri Nets (GSPNs). In Section 3, divided into four subsections, we detail the 
proposed GSPN-based models that integrate both concurrency and parallelism. Section 4 presents a 
discussion of the proposed solutions. Finally, the concluding section summarizes the key findings and 
provides recommendations for future research. 

2. Generalized Stochastic Petri Nets 

Petri Nets are a well-known mathematical and graphical modeling tool widely used to represent 
and analyze concurrent, distributed, and dynamic systems. Generalized Stochastic Petri Nets (GSPNs) 
are an advanced class of Petri Nets, representing an extension of the class of Stochastic Petri Nets 
(SPNs), designed to model systems that exhibit both deterministic and stochastic behaviors. Initially 
introduced by Ajmone Marsan in 1984, GSPNs significantly extend the capabilities of standard (i.e., 
non-timed) Petri Nets by incorporating timing information, thus enabling the analysis of performance, 
reliability, and availability of concurrent and distributed systems [14] [15] [16] [17]. 

Without any intention to elaborate on the building blocks, their graphical representation, and 
operational behavior behind GSPNs in a more detailed manner, we hereby simply present their formal 
definition.  

Formally, a GSPN is defined as a tuple G = (P, T, I, O, M0, λ), where: 
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• P is a finite set of places; 
• T = Timm  Ttimed is a set of transitions, with Timm denoting immediate transitions and Ttimed 
denoting timed transitions; 
• I and O represent the input and output functions, mapping places to transitions and vice versa; 
• M0 is the initial marking of the Petri Net, representing the starting state of the system; 
• λ: Ttimed → ℝ+ maps each timed transition to its associated firing rate.  
It is also worth noting that GSPNs can incorporate inhibitor arcs, which greatly enhance their basic 

functionality, despite not being included in the standard definition of GSPNs. 
The stochastic nature of GSPNs allows for performance analysis through the generation of 

continuous-time Markov chains (CTMCs). Each reachable marking (state) of the GSPN corresponds 
to a state in the CTMC, and the transitions between states are governed by the firing rates of the timed 
transitions. 

GSPNs are widely used in the modeling of complex systems, such as computer systems, computer 
components, communication networks, manufacturing systems, various operations, protocols, 
strategies, etc., where random events, probabilistic choices, and time delays are inherent. 

3. GSPN-based Models of Concurrency and Parallelism 

The following four subsections present and elaborate on the four possible combinations of 
concurrency and parallelism found in computer architectures. It is crucial to distinguish between 
concurrency and parallelism when determining the most effective approach for solving large-scale 
problems, even though these terms are often used interchangeably in practice. By focusing on how 
CPU cores manage tasks at the hardware level, the GSPN-based solutions provided here play a vital 
role in clarifying these two closely related yet fundamentally distinct paradigms. 

For simplicity reasons, it is assumed that there are at most two tasks per CPU core and there are at 
most two CPU cores in the system, which is an absolute minimum. Moreover, in the first two cases, 
both dealing with the concept of non-parallelism, there are just two tasks in the system, Task_A and 
Task_B. In the rest of the cases that deal with the parallelism of tasks, Task_C and Task_D are added 
and also taken into account. It is also supposed that each of these tasks is composed of arbitrary 
number of subtasks (M, N, P, and R), respectively, that can be processed independently by CPU cores. 
As usual, the arrival rate of subtasks in a CPU core is labeled with the Greek letter λ, whilst the 
service rate of CPU cores is labeled with the Greek letter μ. Both the arrival times of tasks in CPU 
cores and CPU cores’ service times are supposed to follow exponential distribution. 

All hereby presented GSPN-based models are built and verified using TimeNET 4.5, a dedicated 
software tool suitable for modeling, analysis, and performance evaluation of stochastic systems using 
extended Petri Nets, including the class of Generalized Stochastic Petri Nets (GSPNs). TimeNET 
provides a powerful development environment suitable for the simulation and formal analysis of 
systems that exhibit concurrency, synchronization, and random behavior, making it particularly useful 
for evaluating systems where timing and probabilistic events play a key role [18] [19] [20] [21]. 

3.1. Case #1: Non-concurrent, non-parallel tasks 

In this case, the system processes all tasks one at a time, sequentially (i.e., one after the other), by 
the means of a single CPU core (Figure 1). 
  

 
Figure 1: Non-concurrent and non-parallel execution of tasks (Source: The authors) 
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A single CPU core executes each task sequentially, so that Task_A finishes before Task_B begins. 
Task_A consists of M subtasks, i.e. tokens held in place P_task_A, while Task_B is comprised of N 
subtasks, i.e. tokens held in place P_task_B, as portrayed in Figure 2. The result of the execution of 
the GSPN model depicted in Figure 2 is equivalent to what is shown in Figure 1. 
 

 
Figure 2: GSPN model resembling Case #1 (Source: The authors) 

3.2. Case #2: Concurrent, non-parallel tasks 

This scenario occurs when the system handles multiple tasks simultaneously, but no two tasks are 
executed at the exact same time. A single CPU core processes Task_A and Task_B concurrently. In 
the GSPN model presented in Figure 3a, the CPU core can process multiple subtasks from either 
Task_A or Task_B, one after the other. Meanwhile, the model in Figure 3b enforces alternating 
processing, where the CPU must complete the current subtask from Task_A before proceeding with 
the next subtask from Task_B and vice-versa, as shown in Figure 4a and Figure 4b, respectively.  
 

 

 
  

(a) Non-alternating subtasks (b) Alternating subtasks 
Figure 3: GSPN model resembling Case #2 (Source: The authors) 
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(a) Non-alternating subtasks 

 

 
(b) Alternating subtasks 

Figure 4: Concurrent and non-parallel execution of tasks (Source: The authors) 

3.3. Case #3: Non-concurrent, parallel tasks 

In this case, the system processes multiple subtasks of a task in multi-core CPU at the same time. 
In this case, two CPU cores execute each task in parallel, as shown in Figure 5. The result of the 
execution of the GSPN model depicted in Figure 5 is equivalent to what is shown in Figure 6. 
 

 
Figure 5: GSPN model resembling Case #3 (Source: The authors) 
 

 
Figure 6: Non-concurrent and parallel execution of tasks (Source: The authors) 
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3.4. Case #4: Concurrent, parallel tasks 

This is the case when the system processes multiple tasks concurrently in a multi-core CPU at the 
same time. In this particular case, there are two CPU cores; each of them executes two tasks 
concurrently; Task_A and Task_B are processed concurrently by CPU Core #1, whilst Task_C and 
Task_D are processed concurrently by CPU Core #2. At the same time, both Task_A and Task_B are 
processed in parallel with Task_C and Task_D (Figure 7). 
 

 
Figure 7: GSPN model resembling Case #4 (Source: The authors) 

 
The result of the execution of the GSPN model depicted in Figure 7 is equivalent to what is shown 

in Figure 8. 
 

 
Figure 8: Concurrent and parallel execution of tasks (Source: The authors) 

4. Discussion 

Despite the fact that GSPNs are a powerful tool for modeling and analyzing systems involving 
concurrency and parallelism, they face several limitations when applied to real-world systems. The 
most significant limitation is the state space explosion problem, which occurs when the complexity of 
the modeled system increases by including more concurrent processes (i.e., tasks), larger number of 
tokens, or transitions. Further on, a serious limitation of this approach can be addressing complexity 
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intrinsic to modeling real-world systems where the processing of tasks involve non-Markovian time 
distributions, such as deterministic, fixed delays or other types of time distributions that are not 
exponential. Yet another important limitation is the difficulty of modeling complex synchronization 
mechanisms frequently found in many computer architectures that control the access of multiple tasks 
(i.e., threads or processes) to shared resources, which might require complex and potentially unwieldy 
Petri Net structures, making the model harder to interpret and analyze, even computationally 
intractable. At last but not at least, there is always the limitation known as the trade-off between 
abstraction level and scalability: GSPNs provide a high level of abstraction, which is advantageous 
for capturing general behaviors of systems, but this feature can become a limitation when low-level 
details are important. The need to model such intricate details can make GSPN models either too 
abstract, which can lead to losing important information, or too complex by reducing the simplicity 
and elegance of the Petri Net approach, thus making the analysis difficult. 

The two important processes used to ensure that the model accurately represents the system being 
studied and behaves as expected are the processes of model verification and validation. 

The verification of the proposed GSPN models, which refers to the process of ensuring that the 
GSPN model is correctly implemented according to its formal specification, has been carried out 
using the TimeNET’s Token Game module. It proved that the proposed models are built correctly in 
terms of their structure, behavior, and conformance to the GSPN rules, by addressing key aspects such 
as structural correctness, deadlocks and liveness, boundedness, reachability analysis, and internal 
consistency. 

On the other hand, the validation of these models, which refers to the process of ensuring that the 
GSPN model accurately represents the real-world system or process it is intended to simulate, has not 
been carried out yet due to the lack of real-world data, physical resources (CPUs), as well as suitable 
tools and measurement methods to convey effective validation. However, in this particular case, this 
aspect may be considered less crucial, since the proposed models are intended to be used mostly as 
conceptual designs, having minded their exploratory and theoretical focus. 

5. Conclusions 

This paper has presented a Petri Net-based approach to modeling concurrency and parallelism in 
computer architectures, with a focus on the use of Generalized Stochastic Petri Nets (GSPNs). The 
proposed formal GSPN framework, despite the ultimate straightforwardness of the presented models, 
offers a flexible and powerful tool for modeling key behaviors in concurrent and parallel execution of 
tasks in computer systems, with a huge potential in providing insights into performance, resource 
utilization, and potential bottlenecks. However, despite their modeling strengths, GSPNs come with 
several limitations that affect their applicability in large-scale, real-world systems, as it was 
elaborated in the previous section. Despite these limitations, GSPNs remain a valuable tool for 
quantitative analysis of systems exhibiting features of concurrency and parallelism, and can be 
applied to obtain metrics such as throughput, utilization, and response time. 

The proposed GSPN-based models presented in this paper can be used for simulating and 
analyzing system performance in computer architecture and related fields, thus helping to assess how 
different task-handling strategies can affect resource utilization and responsiveness under various 
conditions, including the number of subtasks, their arrival rates, and CPU processing speeds. They 
can also help in designing and optimizing hardware or software systems by exploring efficient 
implementations of concurrency and parallelism, optimizing factors like execution speed and energy 
consumption. These models can also be used for verification of system behavior, and detecting issues 
such as deadlocks or bottlenecks. Furthermore, they can allow for the comparison of concurrency and 
parallelism strategies, guiding decision-makers in choosing the best approach. Ultimately, they can 
provide a theoretical foundation for studying and teaching these concepts and assist in resource 
allocation and task scheduling in multi-core or distributed systems for greater efficiency. 

Future work could focus on the performance evaluation of the proposed GSPN-based models and 
their validation vis-à-vis real-world systems. This will ensure that GSPNs remain a practical and 
effective tool in the ongoing efforts to improve the design and analysis of concurrent and parallel 
computing systems. 
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