Skip to main content

Voltammetry of chemically deposited Cu x O electrochromic films, coated with ZnO or TiO2 electrocatalyst layers

Abstract

Cu x O is a known electrochromic material for solar light modulation applications. Cu x O films were synthesized by chemical bath deposition (CBD) method from two aqueous solutions. The films contained the two oxide phases of copper, CuO and Cu2O, established from the X-ray photoelectron spectroscopy (XPS) analysis. The scanning electron microscopy (SEM) scans of the Cu x O film surface demonstrated that the films grew in round grains with average diameters of about 260, 470, and 620 nm, for the films grown upon 100,150, and 200 successive immersions, correspondingly. Cyclic voltammetry has been employed as a tool for examination of the reversible red-ox kinetics. It appeared that the grain size is an influential factor for the voltammetric parameter’s enhancement as the most distinct redox peaks were observed at the 470-nm grain size Cu x O film. In order to enhance the electrochromic performance of the Cu x O-based electrochromic device, two wide gap semiconductors (ZnO and TiO2) were coated onto Cu x O, assuming they reveal protection/catalyst character. Although the “morphology” of the voltammetric profile was found to be similar for the as-prepared and the coated Cu x O films, the voltammetric intensity response apparently grew for the coated films. Furthermore, the results showed that the examined coatings catalyzed the electrochemical redox process, thereby boosting up the efficiency of the CuO ↔ Cu2O reversible electrochemical conversion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam

    Google Scholar 

  2. Pankove JI (1980) Display devices. Springer, Berlin

    Book  Google Scholar 

  3. Lampert CM, Omstead TR, Yu PC (1986) Sol Energy Mater 14:161–174

    Article  CAS  Google Scholar 

  4. Rakhshani AE (1987) J Appl Physics 62:1528–1529

    Article  CAS  Google Scholar 

  5. Ozer N, Tepehan F (1993) Sol Energy Mater Sol Cells 30:13–26

    Article  CAS  Google Scholar 

  6. Demiryont H (1989) US Patent No 4830471

  7. Brown FI, Schulz SC (1996) US Patent No 5585959

  8. Richardson TJ, Slack JL, Rubin MR (2001) Electrochim Acta 46:2281–2284

    Article  CAS  Google Scholar 

  9. Roos A, Chibuye T, Karlsson B (1983) Sol Energy Mater 7:453–465

    Article  CAS  Google Scholar 

  10. Abu-Zeid ME, Rakhshani AE, Al-Jassar AA, Youssef YA (1986) Phys Status Solidi A 93:613–620

    Article  CAS  Google Scholar 

  11. Georgieva V, Ristov M (2002) Sol Energy Mater Sol Cells 73:67–73

    Article  Google Scholar 

  12. Ray SC (2001) Sol Energy Mater Sol Cells 68:307–312

    Article  CAS  Google Scholar 

  13. Sears WM, Fortin E (1984) Sol Energy Mater 10:93–103

    Article  CAS  Google Scholar 

  14. Fortin E, Masson D (1982) Solid State Electron 25:281–283

    Article  CAS  Google Scholar 

  15. Ristov M, Sinadinovski G, Grozdanov I (1985) Thin Solid Films 123:63–67

    Article  CAS  Google Scholar 

  16. Ristova M, Velevska J, Ristov M (2002) Sol Energy Mater Sol Cells 71:219–230

    Article  CAS  Google Scholar 

  17. Neskovska R, Ristova M, Velevska J, Ristov M (2007) Thin Solid Films 515:4717–4721

    Article  CAS  Google Scholar 

  18. Ristova M, Neskovska R, Mirceski V (2007) Sol Energy Mater Sol Cells 91/14:1361–1365

    Article  Google Scholar 

  19. Xu Y, Wang H, Zhu R, Liu C, Wu X, Zhang B (2013) Chemistry – An Asian Journal 1120–1127

  20. Martin PJ, Netterfield RP, Kinder TJ, Descôtes L (1991) Surf Coat Technol 49(1–3):239–243

    Article  CAS  Google Scholar 

  21. Ristov M, Sinadinovski G, Grozdanov I, Mitreski M (1987) Thin Solid Films 149:65–71

    Article  CAS  Google Scholar 

  22. Vincent Crist B (1999) XPS Handbook of elements and native oxides. XPS International Inc, California

    Google Scholar 

  23. Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A, Lameii M (2008) Appl Surf Sci 255:2730–2734

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge the contribution of Dr. Milorad Milun from the Institute of Physics, Zagreb, Croatia, for performing the XPS scans in their laboratory for the merits of this research, and to Ilija Nasov from Plasma Technologies Ltd from Skopje, for depositing the TiO2 coatings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ristova.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ristova, M.M., Mirceski, V. & Neskovska, R. Voltammetry of chemically deposited Cu x O electrochromic films, coated with ZnO or TiO2 electrocatalyst layers. J Solid State Electrochem 19, 749–756 (2015). https://doi.org/10.1007/s10008-014-2666-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2666-x

Keywords

  • Chemical deposition
  • Electrochromism
  • XPS
  • SEM
  • Cu x O
  • ZnO
  • TiO2
  • Cyclic voltammetry