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N-TUPLE WEAK ORBITS TENDING TO INFINITY FOR HILBERT
SPACE OPERATORS

Sonja Mancevska, Marija Orovcanec

Abstract . In this paper we prove some results on the existence of a dense set of
pairs in the direct product of an infinite-dimensional complex Hilbert space
with itself such that each pair in this set has an n-tuple weak orbit tending to
infinity for a specific countable family of mutually commuting bounded linear
operators.

1. INTRODUCTION

For bounded linear operators on Banach spaces the concepts of n-tuple orbits
and n-tuple weak orbits are defined as follows. If X is a complex and infinite-
dimensional Banach space, B(X) is the algebra of all bounded linear operators

on X and 7;,75,...,T, € B(X) are mutually commuting operators, then the n-
tuple orbit of the vector x € X is the set

Orb({T};,x) = {leszkZ TRk >01<i<nl. (1.1)
The n-tuple orbit tends to infinity if

lim Hleszkz...Tnk"x‘:OO,forall k;j20, j#i,1<i,j<n.

k;—o0
For n=1, the n-tuple orbit (1.1) reduces to a simple sequence of form
Orb(T, x) = {T"x ‘= 0,1,2,...} :

usually referred as single orbit (or simply orbit) of the vector x € X under the
operator 7. If X * is the dual space of X, i.e., the space of all bounded linear
functionals x : X —>C, and for xe X and X eX*, <x,x*>:=x*(x), the n-
tuple weak orbit of the pair (x,x")e X x X~ is a set of form

Orb({T VL, x,x™) = {<lelT2k2 T )k 2 051 <i < n} (1.2)

The n-tuple weak orbit tends to infinity if

2010 Mathematics Subject Classification. Primary: 47A05. Secondary: 47A11,
47A25.

Key words and phrases. Hilbert spaces, weak orbits, n-tuple weak orbits,
sequences of operators.
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tim (1T x| =0, forall &; 20, j#i, 15i,j<n |
k;—0

For n=1 , the n-tuple weak orbit (1.2) reduces to a simple scalar sequence of
form

Orb(7,x,x") = {<T”x,x*>:n = 0,1,2,...} ,

usually referred as weak orbit of the pair (x,x*) e Xx X" under the operator 7T .

For the case of Hilbert spaces, by the Riesz Theorem for representation of a
bounded linear functional on Hilbert spaces (cf. [7,II1.6]), given an infinite-

dimensional complex Hilbert space H with an inner product {-|-), its dual space
H canbe fully identified with the space itself since

H ={x}—><x|y>,er:yeH}.
Hence, for a set of mutually commuting operators 7;,75,...,7,, € B(H) the n-

tuple weak orbits will be the sets of form

Orb({T V", x, ) = {<T1k1T2k2 T y) ik 2 051 <i < n} vy e HxH .

In this paper we will consider only the conditions under which the direct
product H x H contains a dense of pairs (x,y) with n-tuple weak orbits

tending to infinity that do not involve any requirements upon specific subsets of
the spectra of the operators. For H xH we will assume that is endowed with
the product topology. Given an operator 7' € B(H), o(T) and »(T) will denote

the spectrum and the spectral radius of the operator 7', respectively.
2. PRELIMINARY RESULTS

Theorem 2.1. ([6, Theorem V.39.8]) Let H and K be Hilbert spaces, (T,),>
be a sequence of operators in B(H,K) and (a,),> be sequence of positive

numbers with ) - a, <. Then

(1) there are xe H and y € K such that and |<Tnx|y>| >a, ||Tn

,forall n;
(i1) there is a dense subset of pairs (x,y) € HxK such that |<Tnx| y>| >a, ||T 0

b

for all n sufficiently large.

Corollary 2.2. ([6, Corollary V.39.9]) Let H be Hilbert space and T € B(H) is

such that ZfZIHTk”_I <. Then there exist x,y € H such that ‘<T”x‘y>‘ —> 0.

Moreover, the set of such pairs (x,y) is densein Hx H .
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Lemma 2.3. ([6, Lemma V.37.15]) Let £>0 and (a,),> be a sequence of
positive numbers satisfying Y - a, <&. Then there is a sequence of positive

numbers (b, ),> such that b, —w© as n—>o and ), . a,b, <¢.

3. MAIN RESULTS

Let F={1,2,...,N} forsome NeN, N>2,or F=N.
Theorem 3.1. Let H be a Hilbert space, {T;:ieF}c B(H) and
{(g;, j) jo1iiEF } be a family of sequences of positive numbers such that
ZieF,jZlai,j <. Then for any open balls B; and B, in H there are vectors

xe B, yeB, and kyeN such that
k
(] e

Proof. Let T == T,-k (ieF, keN), f:FxN—>N be the bijective mapping
defined with

Y}k Jforall ieF and k> k.

i+N(i-1), if F={,2,...,N}
i, s — . ._ . ._ s
SUGHD=G+] 2;(1+] 1)+j, PN

and let g:N — FxN denote its inverse mapping. If (a,,),>; is a sequence of
positive numbers and (7)), is a sequence of operators defined with
ay =ag(y and Ty =Ty, forall neN,

then > a4, =2 F,j=14;,j <. Hence (by Theorem 2.1. (ii), applied on
(ap)p>1> (T,),> and H=K), if By and B, are open balls H , then there are
xe B, ye B, and ny €N such that

(Tl )= @i I
Since f : F'xN — N is bijective, there is a unique pair (i, jj) € " xN such that
) Zf(io,jo) . Let

,forall n>n. (3.1)

‘ _{j0+1, if F={1,2,...,N}
O Vig+jo, if F=N '
If (i,k) e FxN 1is such that k >k, then by the definition of f:FxN >N we
have:
1. for F={1,2,...,N},
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fl,k)y=i+N(k—-1)>N(kg—1)=Njo=N+N(jy-1)
2ip+N(jo=1=ng,
2. for F=N,
fGk) = (i+k—2;(i+k—1) ks iy + Jo —2)2(1’0 +Jjo—1)
Hence, by (3.1) and the definition of (a,,),>; and (7},),>; Wwe obtain

+j0 =ngy.

(| ) = (7 1) =T33 2 g | = e [

forall ie F and k> k,. W

b

Theorem 3.2. If H is Hilbert space and {I;:ie F}c B(H) is a family of
-1
operators such that Zle”leH <oo, for all ie F, then there is a dense set

D c HxH such that the weak orbit (<Tl~kx‘y>)k>0 tends to infinity for every
pair (x,y)eD and every icF. If, in addition, {I;:ic€F} is a family of
mutually commuting operators such that the sequence (Tl-k —Tjk Vi>1 IS norm

bounded for all i,je F, then for every neF and 1<m<n, the m—tuple
weak orbit

{<T.k1 T2 .Tnx

h I

y>:k,-20;1£i£m},
tends to infinity for all 1<i) <iy <...<i, <n.

Proof. Let B; and B, be open balls H . For ie F', let &; >0 be such that

© 1 1

and (by Lemma 2.3) let (b; 4 )x> be the sequence of positive numbers such that

biy > as k —> o and

® &bk 1

) <—. 32
=1 ]—;k 2l+1 ( )

-1
, (i,k) e FxN, then by (3.2) we have

Sip g = L 5k e L]
jeF k>1%k = - 5
= ieF k=1 Tik ieF ZH—I 2

If a; j =& ¢

Hence, by Theorem 3.1, there are x € By, y € B, and k; € N such that
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(1] )| = s || = s 1] 3] = e for all 7 F and k2 kg
Letting £ — o, we have
lim |(7x|y)| =<0 , forall i e F | (33)
k—o0

If, in addition, {7;:i e F'} is a family of mutually commuting operators such

that the sequence (Tl-k -T Jk )i>1 18 norm bounded for all i, j€ F', let M; ;>0 is

such that

Tik—TJk“SM for all k>0, and let (x,y)e HxH be a pair

i’j >
satisfying (3.3). We continue by induction.
Let m=2 and 1<ij <iy<n. By the Cauchy-Bunyakovsky-Schwarz

ki ke
) el(r )
o
)

Al ol + (7

o)

y>‘—>oo as ky > oo, for all

inequality we have
‘ <Tk1+k2x y>

h h h I

< <T.k1 ke ki

ky ok k ky ke
g N

]

ky ok k Iy ok
<Jri e —mf oo

ky

i

h

Tk

h

IN

_rk
%)

o)

AR RN

ll ,12
<T.k1+k2x
b

Since — o0 as n—> o (hence

n
()

ky > 0), the above inequalities imply that

<T.k1 Thy y>

h I
<T.k1+k2x _rh Tiifzx

y> 5] I

— o, as ky >, forall i;>0.

ky ko
y>‘+‘<T,~11Tizzx y>‘

ky ke
el

S”T ||k2 M. i ."x”.”y”_'_KTleka y>

) I, i I
y> —o0,as ky > oo, forall £k, 20.

To complete the proof, it is enough to show the claim is true for m =n, under
the assumption that the (n-1)-tuple weak orbit

Similarly,

‘ <Tk1+k2x
)

<

= KT.kZ (rh —h)x
h " h b

b

which implies that
<T.k1 TR
b

h
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<T.k1 Tk TRty
h I In-1

y>:kj20;1£j£n—1},
tends to infinity for all 1<i <...<i,_; <n.Fora fixed i e{l,2,...,n}, arbitrary
je{l2,...,n}\{i} and fixed ky,k,,...,k,, 20 we have

)

k ki1 ki ok, k
<T1 TSR Ty

k k; g roke; ok k, ky ke k, Ky ok k,

< <Tll...Ti_11Tj Tiﬂ”...Tn -7, T, xy>‘+‘<TllT22...Tn xy>‘
ki kg ki k, ki ki ky ok k,

o (oA b A C O ey )x‘y>‘+‘<TllT22...Tn )
k k;_y ok ky (ki mk; ky ok k,

<\ T T (T T, )x”-||y||+‘<TllT22...Tn xy>‘

ol

Since je{l,2,...,n}\{i}, by the inductive assumption, we have
)
This, together with the above inequalities implies that

Klel T2 .. Tnx
which completes the proof. B

< f[nz;“k, M Il (R s
=1

1#i

k ki1 k; pk; k
<T1 LTSI T

— o0 as k; - oo, for all ijO, J#IL.

y>‘—>oo as k; >0, forall k; 20, j=i,

Corollary 3.3. If H is a Hilbert space and {I;:ie F}c B(H) is a family of
operators such that v(T;) >1, for all i € F', then there is a dense set D c Hx H

such that the weak orbit (<Tl~kx‘y>)k>0 tends to infinity for every pair
(x,y)eD and every ic F. If, in additio;a, {T;:ie F} is a family of mutually
commuting operators such that the sequence (T,-k -T Jk )ic>1 is norm bounded for

all i,j e F , then for every ne F, every 1 <m <n the m— tuple weak orbit
{<T.k1 T Ty

h I m

y>:kl-20;1£i£m},
tends to infinity for all 1<i) <ip <...<i, <n.

-1
Proof. If T e B(H) has a spectral radius »(7)>1, then ZfZIHTk” <.
Namely, if #(T)>1, then there is A€o (T) such that 1<|1|. By the Spectral

Mapping Theorem, A" € o(I") for every neN. Hence |A|" <r(T")< ”T””
and
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® 1 © 1

D e

| a2l
Now the conclusion follows from Theorem 3.2. B

< 0

4. REMARKS ON N-TUPLE ORBITS TENDING TO INFINITY

By the Cauchy-Bunyakovsky-Schwarz inequality we have
(rhrf . Thix y>‘ <|rhrfe . rfx

[
for all (x,y)eHxH, k ;20 and 1< j<n . These inequalities clearly imply

b

that the n-tuple orbit Orb({T;}/_;,x) tends to infinity whenever there is y e H

such that the n-tuple weak orbit {<le1T2k2 ...Tnk"x y>:k,- 20;1<i< n} tends to

infinity. Hence, from the results in the previous section we can derive the
following results for n-tuple orbits tending to infinity.

Theorem 4.1. If H is Hilbert space and {I;:ie F}c B(H) is a family of

operators such that Y7 Tik <o for all ieF, then there is a dense set

D c H such that the orbit Orb(T},x) tends to infinity for every xeD and
every i€ F. If, in addition, {T;:icF} is a family of mutually commuting
operators such that the sequence (Y}k -T Jk )i>1 s norm bounded for all i,j e F ,
then for every neF, every 1<m<n, the m—tuple orbit Orb({Tij }?’:l,x)

tends to infinity for all 1<) <ip <...<i, <n.

Corollary 4.2. If H is Hilbert space and {I;:ie F}c B(H) is a family of
operators such that r(I;)>1 for all i€ F, then there is a dense set D c H

such that the orbit Orb(T;,x) tends to infinity or every x e D and every ieF .
If, in addition, {T; :i € F'} is a family of mutually commuting operators such that

the sequence (T,-k -T jk)kZI is norm bounded for all i,jeF, then for every
ne k', every 1<m<n, the m—tuple orbit Orb({Tij }'}1:1,)() tends to infinity for

all lSi1<i2 <...<imén.
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