Union of Mathematicians of Macedonia - ARMAGANKA

IX SEMINAR OF DIFFERENTIAL EQUATIONS AND ANALYSIS

and
1st CONGRESS OF DIFFERENTIAL EQUATIONS, MATHEMATICAL ANALYSIS AND APPLICATIONS

CODEMA 2020

Proceedings of the CODEMA 2020 Збборник на трудови од CODEMA 2020

Skopje, 2021

Proceedings of the CODEMA 2020 Зборник трудови од CODEMA 2020

ORGANIZING COMMITTEE:
Aleksa Malcheski, President
Slagjana Brsakoska, Vice President
Risto Malcheski
Tomi Dimovski
Zoran Misajleski
Samoil Malcheski
Metodi Glavche
Zlatko Petkovski
HONORARY COMMITTEE:
Boro Piperevski
Borko Ilievski
Lazo Dimov
\section*{PROGRAM COMMITTEE:}
Risto Malcheski, President
Academician Stevan Pilipović, Serbia
Academician Sava Grozdev, Bulgaria
Academician Gregoris A. Makrides, Cyprus
Academician Rosen Nikolaev, Bulgaria
Corr. Member of SANU Vladimir Rakočević, Serbia
Radu Gologan, Romania
Erdal Karapinar, Turkey
Veselin Nenkov, Bulgaria
Dragan Djordjević, Serbia
Adrian Naco, Albania
Branislav Popović, Serbia
Marija Stanić, Serbia
Snježana Maksimović, BIH
Ana Vukelić, Croatia
Julije Jakšetić, Croatia
Romeo Meštrović, Montenegro
Miomir Andjić, Montenegro
Nenad Vulović, Serbia
Hranislav Milošević, Serbia
Jelena Vujaković, Serbia
Kostadin Trenchevski, Macedonia
Alit Ibrahimi, Macedonia
Daniel Velinov, Macedonia
Sanja Atanasova, Macedonia
Biljana Zlatanovska, Macedonia
Skopje, 2021

CONTENTS

1 FOR A CORRELATION BETWEEN A CLASS OF SECOND ORDER LINEARDIFFERENTIAL EQUATIONS AND A CLASS OF SYSTEMS OF FIRST ORDERDIFFERENTIAL EQUATIONSBoro M. Piperevski, Biljana Zlatanovska2 THREE THEOREMS ABOUT FIXED POINT FOR CONTRACTIONS IN ACOMPLETE METRIC SPACERisto Malcheski, Samoil Malcheski13
3 N-TUPLE ORBITS TENDING TO INFINITY Sonja Mančevska, Marija Orovčanec 23
4 COMMON FIXED POINTS OF TWO Tf CHATTERJEA TYPE CONTRACTIONS IN A COMPLETE METRIC SPACE Samoil Malcheski, Risto Malcheski, Aleksa Malcheski 33
5 CLASSIFICATIONS OF SYSTEMS OF LINEAR EQUATIONS BASED ON ITS GEOMETRICAL INTERPETATIONS Zoran Misajleski, Daniel Velinov and Aneta Velkoska 39
6 COMMON FIXED POINTS FOR TWO Tf KANNAN TYPE CONTRACTIONS IN A COMPLETE METRIC SPACE Samoil Malcheski, Risto Malcheski, Katerina Anevska 51
7 SOME FIXED POINT THEOREMS IN S-COMPLETE SPACES
T. Dimovski, P. Dimovski 57
8 MOORE-PENROSE HERMITIAN ELEMENTS IN RINGS WITH INVOLUTION M. Tošić, N. Kontrec, E. Ljajko 63
9 KNOT BENDING
Marija S. Najdanović, Ljubica S. Velimirović, Svetozar R. Rančić 71
10 MAXIMUM RELIABILITY K-CENTER LOCATION PROBLEM Nataša Kontrec, Biljana Panić, Marina Tošić, Mirko Vujošević 81
11 USING FRACTAL ANALYSIS FOR DETECTING LEUKEMIA Vesna Andova, Sanja Atanasova, Anastasija Nikolovska 89
12 DETERMINATION OF THE GEOMETRIC (m, n) STRUCTURE OF EXPERIMENTALLY PRODUCED CNTs 99Viktor Andonovic, Aleksandar T. Dimitrov, Perica Paunovic, Beti Andonovic13 REGRESSION METHODS IN ANALYSIS OF GEOTECHNICAL PARAMETERS OFCOAL DEPOSITSBojana Nedelkovska, Igor Peshevski, Milorad Jovanovski,Daniel Velinov, Zoran Misajleski115
14 DETERMINATION OF A FLOOD WAVE PROPAGATION CAUSED BY HIGH INTENSITY RAINFALLS USING PROBABILITY TECHINQUES Mihail Naumovski, Daniel Velinov, Zoran Misajleski 133
15 DETERMINATION OF CERTAIN PARAMETERS IN HYDROLOGY THROUGH STATISTICS
Violeta Gjeshovska, Daniel Velinov, Sasha Jadrovski 145
16 FLOOD FORECASTING USING ARTIFICIAL NEURAL NETWORKS
Drenushe Fidani, Violeta Gjeshovska and Silvana Petrusheva 165

17 SEVERAL RELATIONS BETWEEN THE ROOTS OF POLYNOMIALS, THE ROOTS OF THEIR DERIVATIVES AND THE FOCI OF IN-ELLIPSES Sava Grozdev, Veselin Nenkov

18 WORKING WITH MATHEMATICALLY GIFTED STUDENTS IN PRIMARY EDUCATION - PART ONE
Risto Malcheski, Aleksa Malcheski, Katerina Anevska, Metodi Glavche
19 WORKING WITH MATHEMATICALLY GIFTED STUDENTS IN PRIMARY EDUCATION - PART TWO
Risto Malcheski, Aleksa Malcheski, Katerina Anevska, Metodi Glavche
20 INVESTIGATING SOME ASPECTS OF PRE-SERVICE PRIMARY SCHOOL TEACHERS' MATHEMATICS ANXIETY Aleksandra Mihajlović, Nenad Vulović, Milan Milikić 211
21 PROMOTING REFLECTION DURING MENTAL MATH 223
22 ВЕКТОРИТЕ ВО ОСНОВНОТО ОБРАЗОВАНИЕ, ПРЕД И ПОСЛЕ ВОВЕДУВАЊЕТО НА КЕМБРИЏ ПРОГРАМАТА Ана Димовска, Томи Димовски229

23 NOVEL APPROACH TO STUDENTS FOR EFFECTIVENESS AND EFFICIENCY IN MATH EDUCATION
Beti Andonovic, Ana Zhabevska Zlatevski, Viktor Andonovic
241
24 ONE THEOREM FOR ONE TYPE VEKUA EQUATION Slagjana Brsakoska 255
25 EXTENSION OF TWO SIDED BRANCH 2-SUBSPACE AND SOME EXTENSIONS OF HAHN - BANACH TYPE FOR SKEW-SYMMETRIC 2- LINEAR FUNCTIONALS DEFINED ON IT Slagjana Brsakoska, Aleksa Malcheski
26 EXTENSION OF ONE SIDED BRANCH 2-SUBSPACE AND SOME EXTENSIONS OF HAHN - BANACH TYPE FOR SKEW-SYMMETRIC 2- LINEAR FUNCTIONALS DEFINED ON IT
Slagjana Brsakoska, Aleksa Malcheski
27 EXTENSION OF FINITE BRANCH 2-SUBSPACE AND SOME EXTENSIONS OF HAHN - BANACH TYPE FOR SKEW-SYMMETRIC 2- LINEAR FUNCTIONALS DEFINED ON IT
Slagjana Brsakoska, Aleksa Malcheski
28 EXTENSION OF A CYCLIC 2-SUBSPACE GENERATED BY FOUR 2- VECTORS AND SOME EXTENSIONS OF HAHN-BANACH TYPE FOR SKEW-SYMMETRIC 2-LINEAR FUNCTIONALS DEFINED ON IT Slagjana Brsakoska, Aleksa Malcheski
29 SOME RECENT FIXED POINT RESULTS OF F-CONTRACTIVE MAPPINGS IN METRIC SPACES Jelena Z. Vujaković, Ljiljana R. Paunović, Olga V. Taseiko
30 OSTROWSKI-GRUSS" TYPE INEQUALITY OF CHEBYSHEV FUNCTIONAL WITH APPLICATION TO THE WEIGHT THREEPOINT INTEGRAL FORMULA Sanja Kovač
31 A CONTRIBUTION TO THE LINEARIZATION OF THE VEKUA EQUATION Slagjana Brsakoska

N-TUPLE ORBITS TENDING TO INFINITY

Sonja Mančevska, Marija Orovčanec

Abstract

In this paper we prove some results on the existence of a dense set of vectors each having an n-tuple orbit tending to infinity for sequences of mutually commuting bounded linear operators acting on an infinite dimensional complex Banach space.

1. INTRODUCTION

Let X be a complex infinite-dimensional Banach space and $B(X)$ the algebra of all bounded linear operators acting on X. For an operator $T \in B(X)$, $\sigma(T), \sigma_{\mathrm{p}}(T), \sigma_{\mathrm{ap}}(T)$ and $r(T)$ will denote the spectrum, the point spectrum, the approximate point spectrum and the spectral radius of the operator T, respectively.

If $T_{1}, T_{2}, \ldots, T_{n} \in B(X)$ are mutually commuting operators, the n-tuple orbit (or the orbit under the n-tuple $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$) of the vector $x \in X$ is the set

$$
\begin{equation*}
\operatorname{Orb}\left(\left\{T_{i}\right\}_{i=1}^{n}, x\right)=\operatorname{Orb}(\mathbf{T}, x)=\left\{T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x: k_{i} \geq 0 ; 1 \leq i \leq n\right\} \tag{1.1}
\end{equation*}
$$

The n-tuple orbit tends to infinity if

$$
\lim _{k_{i} \rightarrow \infty}\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x\right\|=\infty, \text { for all } k_{j} \geq 0, j \neq i, 1 \leq i, j \leq n
$$

For $n=1$, the n-tuple orbit (1.1) reduces to a simple sequence of form

$$
\operatorname{Orb}(T, x)=\left\{T^{n} x: n=0,1,2, \ldots\right\},
$$

usually referred as single orbit (or simply orbit) of the vector $x \in X$ under the operator T. Regardless of the dimension of the space, single orbits tending to infinity may exist only when T is power unbounded operator, i.e. when $\sup _{n}\left\|T^{n}\right\|_{=\infty}$. In this case, by the Banach-Steinhaus theorem, the space will contain a dense G_{δ}-set of vectors each having an unbounded orbit under T (i.e. orbit with $\left.\sup _{n}\left\|T^{n} x\right\|=\infty\right)$. But, unlike the case of an operator T acting on a finite-dimensional space where the only unbounded orbits for T are those tending to infinity and may exist if, and only if, $r(T)>1$, in the case of an

2010 Mathematics Subject Classification. Primary: 47A05; Secondary: 47A11, 47A25.
Key words and phrases. Banach spaces, orbits tending to infinity, n-tuple orbits, sequences of operators
infinite-dimensional space, the structure of the set of all vectors with orbits tending to infinity can be quite different. Clearly, if $\sigma_{p}(T)$ contains a point λ such that $|\lambda|>1$, this set will contain all the elements of $\operatorname{Ker}(T-\lambda I) \backslash\{0\}$. Furthermore, the set of all vectors with orbits tending to infinity can be dense in the whole space, even if the point spectrum of the operator is empty. The results obtained by B. Beauzamy for operators on infinite-dimensional Hilbert or reflexive Banach space X (cf. [1, Ch. III]) imply that for any operator $T \in B(X)$ for which $\sigma_{\mathrm{ap}}(T) \backslash \sigma_{\mathrm{p}}(T)$ contains a point λ with $|\lambda|>1$, the space will contain a dense set D such that $\left\|T^{n} x\right\| \rightarrow \infty$ as $n \rightarrow \infty$, for all $x \in D$. The results obtained by V. Müller ([7] and [8]) imply that such set exists for any operator T on arbitrary infinite-dimensional Banach space as long as $r(T)>1$. In general, this set is not a G_{δ}-set since the space may contain another dense G_{δ}-set of vectors with unbounded orbits: vectors for which $\operatorname{Orb}(T, x)$ itself is dense in the whole space (cf. [9, Theorem 1] or [1, III.0.C]).

Under the assumption that T_{1} and T_{2} are bounded linear operators on infinite-dimensional Hilbert or reflexive Banach space satisfying

$$
\begin{aligned}
& \left(\sigma_{\text {ap }}\left(T_{1}\right) \backslash \sigma_{\mathrm{p}}\left(T_{1}\right)\right) \cap\{\lambda \in \mathbb{C}:|\lambda|>1\} \neq \varnothing, \\
& \left(\sigma_{\text {ap }}\left(T_{2}\right) \backslash \sigma_{\mathrm{p}}\left(T_{2}\right)\right) \cap\{\lambda \in \mathbb{C}:|\lambda|>1\} \neq \varnothing,
\end{aligned}
$$

in [2] and [3] the authors have shown that the space contains a dense set D such that

$$
\left\|T_{1}^{n} x\right\| \rightarrow \infty \text { and }\left\|T_{2}^{n} x\right\| \rightarrow \infty, \text { for all } x \in D
$$

If, in addition, T_{1} and T_{2} are commuting operators, each bounded bellow, then for every $x \in D$ the corresponding 2 -tuple orbit tends to infinity ([10, Theorem 1.4]):

$$
\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} x\right\| \rightarrow \infty \text { as } k_{1} \rightarrow \infty, \text { for every } k_{2} \geq 0,
$$

and

$$
\left\|T_{1}^{k_{1}} T_{2}^{k_{2} x}\right\| \rightarrow \infty \text { as } k_{2} \rightarrow \infty, \text { for every } k_{1} \geq 0
$$

Using the following three results, in the next section we are going to generalize this result for n-tuple orbits and sequences of mutually commuting operators each bounded bellow.

Theorem 1.1. ([8, Theorem V.37.14]) Let X and Y be Banach spaces and let $\left(T_{n}\right)_{n \geq 1}$ be a sequence of operators in $B(X, Y)$. Then for every sequence of positive numbers $\left(a_{n}\right)_{n \geq 1}$ with $\sum_{n \geq 1} a_{n}<\infty$, in every open ball in X with
radius strictly larger than $\sum_{n \geq 1} a_{n}<\infty$, there is a vector $x \in X$ satisfying $\left\|T_{n} x\right\| \geq a_{n}\left\|T_{n}\right\|$, for all $n \geq 1$.

Lemma 1.2. ([8, Lemma V.37.15]) Let $\varepsilon>0$ and $\left(a_{n}\right)_{n \geq 1}$ be a sequence of positive numbers satisfying $\sum_{n \geq 1} a_{n}<\varepsilon$. Then there is a sequence of positive numbers $\left(b_{n}\right)_{n \geq 1}$ such that $b_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $\sum_{n \geq 1} a_{n} b_{n}<\varepsilon$.

Corollary 1.3. ([8, Corollary V.37.16]) If $T \in B(X)$ satisfies $\sum_{n=1}^{\infty}\left\|T^{n}\right\|^{-1}<\infty$, then there is a dense set $D \subset X$ such that $\operatorname{Orb}(T, x)$ tends to infinity for every $x \in D$.

2. Main Results

Throughout the rest of this paper we assume that the spaces are complex and infinite-dimensional.

Lemma 2.1. Let X be a Banach space and $T_{1}, T_{2}, \ldots T_{n} \in B(X)$ are mutually commuting operators with at least one of the following properties:
(P.1) the operator T_{i} is bounded bellow, for every i;
(P.2) $\left(T_{i}^{k}-T_{j}^{k}\right)_{k \geq 0}$ is a norm bounded sequence, for every i and j.

If $x \in X$ is such that $\operatorname{Orb}\left(T_{i}, x\right)$ tends to infinity for every $i \in\{1,2, \ldots, n\}$, then for every $1 \leq m \leq n$ and every $1 \leq i_{1}<i_{2}<\ldots<i_{m} \leq n$ the m-tuple orbit $\operatorname{Orb}\left(\left\{T_{i_{j}}\right\}_{j=1}^{m}, x\right)$ tends to infinity.

Proof. If the operators $T_{1}, T_{2}, \ldots T_{n}$ have the property (P.1), then there are positive numbers $C_{1}, C_{2}, \ldots C_{n}$ such that

$$
\left\|T_{i} x\right\| \geq C_{i}\|x\| \text {, for all } x \in X, 1 \leq i \leq n .
$$

Hence, if $1 \leq m \leq n, 1 \leq i_{1}<i_{2}<\ldots<i_{m} \leq n$ and $k_{j} \geq 0, j \in\{1,2, \ldots, m\}$, then for every $s \in\{1,2, \ldots, m\}$ and fixed values for $k_{j}, j \in\{1,2, \ldots, m\} \backslash\{s\}$

$$
\left\|T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} \ldots T_{i_{m}}^{k_{m}} x\right\| \geq\left(\prod_{l=1}^{m} C_{i_{l}}^{k_{l}}\right) \cdot\left\|T_{i_{s}}^{k_{s}} x\right\| \rightarrow \infty, \text { as } k_{s} \rightarrow \infty
$$

Now, assume that the operators $T_{1}, T_{2}, \ldots T_{n}$ have the property (P.2). For $i, j \in\{1,2, \ldots, n\}$, let $M_{i, j}>0$ is such that $\left\|T_{i}^{k}-T_{j}^{k}\right\| \leq M_{i, j}$, for every $k \geq 0$.

We continue by induction. Let $m=2$ and $1 \leq i_{1}<i_{2} \leq n$. Then

$$
\begin{aligned}
\left\|T_{i_{1}}^{k_{1}+k_{2}} x\right\| & \leq\left\|T_{i_{1}}^{k_{1}+k_{2}} x-T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x\right\|+\left\|T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x\right\| \\
& =\left\|T_{i_{1}}^{k_{1}}\left(T_{i_{1}}^{k_{2}}-T_{i_{2}}^{k_{2}}\right) x\right\|+\left\|T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x\right\| \\
& \leq\left\|T_{i_{1}}^{k_{1}}\right\| \cdot\left\|T_{i_{1}}^{k_{2}}-T_{i_{2}}^{k_{2}}\right\| \cdot\|x\|+\left\|T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x\right\| \\
& \leq\left\|T_{i_{1}}\right\|^{k_{1}} \cdot M_{i_{1}, i_{2}} \cdot\|x\|+\left\|T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x\right\| .
\end{aligned}
$$

Since $\left\|T_{i_{1}}^{n} x\right\| \rightarrow \infty$ as $n \rightarrow \infty$ (and hence $\left\|T_{i_{1}}^{k_{1}+k_{2}} x\right\| \rightarrow \infty$ as $k_{2} \rightarrow \infty$, for all $k_{1} \geq 0$), the above inequalities imply that

$$
\left\|T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x\right\| \rightarrow \infty, \text { as } k_{2} \rightarrow \infty, \text { for all } k_{1} \geq 0
$$

Similarly, the following inequalities

$$
\begin{aligned}
\left\|T_{i_{2}}^{k_{1}+k_{2}} x\right\| & \leq\left\|T_{i_{2}}^{k_{1}+k_{2}} x-T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x\right\|+\left\|T_{i_{1}}^{k_{1}} i_{i_{2}}^{k_{2}} x\right\| \\
& =\left\|T_{i_{2}}^{k_{2}}\left(T_{i_{2}}^{k_{1}}-T_{i_{1}}^{k_{1}}\right) x\right\|+\left\|T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x\right\| \\
& \leq\left\|T_{i_{2}}^{k_{2}}\right\| \cdot\left\|T_{i_{2}}^{k_{1}}-T_{i_{1}}^{k_{1}}\right\| \cdot\|x\|+\left\|T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x\right\| \\
& \leq\left\|T_{i_{2}}\right\|^{k_{2}} \cdot M_{i_{2}, i_{1}} \cdot\|x\|+\left\|T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x\right\| .
\end{aligned}
$$

imply that

$$
\left\|T_{i_{1}}^{k_{1}} T_{i_{2}}^{k_{2}} x\right\| \rightarrow \infty, \text { as } k_{1} \rightarrow \infty, \text { for all } k_{2} \geq 0
$$

To complete the proof, it is enough to show the claim for $m=n$, under the assumption that $\operatorname{Orb}\left(\left\{T_{i_{j}}\right\}_{j=1}^{n-1}, x\right)$ tends to infinity for all $1 \leq i_{1}<\ldots<i_{n-1} \leq n$.

For a fixed $i \in\{1, \ldots, n\}$, arbitrary $j \in\{1, \ldots, n\} \backslash\{i\}$ and $k_{1}, \ldots, k_{n} \geq 0$ we have

$$
\begin{aligned}
\| T_{1}^{k_{1}} & \ldots T_{i-1}^{k_{i-1}} T_{j}^{k_{i}} T_{i+1}^{k_{i+1}} \ldots T_{n}^{k_{n}} x \| \\
& \leq\left\|T_{1}^{k_{1}} \ldots T_{i-1}^{k_{i-1}} T_{j}^{k_{i}} T_{i+1}^{k_{i+1}} \ldots T_{n}^{k_{n}} x-T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x\right\|+\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x\right\| \\
& =\left\|T_{1}^{k_{1}} \ldots T_{i-1}^{k_{i-1}} T_{i+1}^{k_{i+1}} \ldots T_{n}^{k_{n}}\left(T_{j}^{k_{i}}-T_{i}^{k_{i}}\right) x\right\|+\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x\right\| \\
& \leq\left\|T_{1}^{k_{1}} \ldots T_{i-1}^{k_{i-1}} T_{i+1}^{k_{i+1}} \ldots T_{n}^{k_{n}}\right\| \cdot\left\|T_{j}^{k_{i}}-T_{i}^{k_{i}}\right\| \cdot\|x\|+\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x\right\| \\
& \left.\leq\left(\begin{array}{l}
n \\
l=1 \\
l \neq i
\end{array}\right) T_{l} \|^{k_{l}}\right) \cdot M_{i, j} \cdot\|x\|+\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x\right\| .
\end{aligned}
$$

Since $j \in\{1,2, \ldots, n\} \backslash\{i\}$,

$$
T_{1}^{k_{1}} \ldots T_{i-1}^{k_{i-1}} T_{j}^{k_{i}} T_{i+1}^{k_{i+1}} \ldots T_{n}^{k_{n}} x \in \operatorname{Orb}\left(\left\{T_{1} \ldots T_{i-1} T_{i+1} \ldots T_{n}\right\}, x\right)
$$

and, by assumption, this ($n-1$)-tuple orbit tents to infinity,

$$
\left\|T_{1}^{k_{1}} \ldots T_{i-1}^{k_{i-1}} T_{j}^{k_{i}} T_{i+1}^{k_{i+1}} \ldots T_{n}^{k_{n}} x\right\| \rightarrow \infty \text { as } k_{i} \rightarrow \infty, \text { for all } k_{j} \geq 0, j \neq i
$$

This, together with the above inequalities implies that

$$
\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x\right\| \rightarrow \infty \text { as } k_{i} \rightarrow \infty, \text { for all } k_{j} \geq 0, j \neq i
$$

which completes the proof.

Theorem 2.2. If X is a Banach space and $T_{1}, T_{2}, \ldots T_{n} \in B(X)$ are operators with $r\left(T_{i}\right)>1,1 \leq i \leq n$, then there is a dense set $D \subset X$ such that $\operatorname{Orb}\left(T_{i}, x\right)$ tends to infinity for every $x \in D$ and every $1 \leq i \leq n$. If, in addition, the operators are mutually commuting and have at least one of the properties (P.1) and (P.2) in Lemma 2.1, then the m-tuple orbit $\operatorname{Orb}\left(\left\{T_{i_{j}}\right\}_{j=1}^{m}, x\right)$ tends to infinity for every $x \in D, 1 \leq m \leq n$ and $1 \leq i_{1}<i_{2}<\ldots<i_{m} \leq n$.

Proof. By Lemma 2.1, it is sufficient to prove the first assertion in the theorem.

Let $z \in X$ and $\varepsilon>0$. Since $r\left(T_{i}\right)>1$ there is $\lambda_{i} \in \sigma\left(T_{i}\right)$ such that $\left|\lambda_{i}\right|>1$, $1 \leq i \leq n$. If $q, C \in \mathbb{R}$ are chosen such that

$$
1<q<\min \left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|\right\},
$$

and

$$
0<C<\frac{\varepsilon(q-1)^{2}}{2(n+1)},
$$

then the sequences of positive numbers $\left\{\left(a_{i, k}\right)_{k \geq 1}: 1 \leq i \leq n\right\}$ defined with

$$
a_{i, k}=C q^{-(i+k)}, 1 \leq i \leq n, k \geq 1,
$$

will satisfy

$$
\begin{equation*}
\sum_{1 \leq i \leq n} \sum_{k \geq 1} a_{i, k}<\frac{\varepsilon}{2} . \tag{2.1}
\end{equation*}
$$

If the sequence of operators $\left(S_{j}\right)_{j \geq 1}$ and the sequence of positive numbers $\left(a_{j}\right)_{j \geq 1}$ are defined with

$$
\begin{equation*}
S_{(k-1) n+i}=T_{i}^{k} \text { and } a_{(k-1) n+i}=a_{i, k} \text {, for } 1 \leq i \leq n, k \geq 1, \tag{2.2}
\end{equation*}
$$

then

$$
\sum_{j \geq 1} a_{j}=\sum_{1 \leq i \leq n} \sum_{k \geq 1} a_{i, k}
$$

and hence, by Theorem 1.1 (applied on $\left(S_{j}\right)_{j \geq 1}$ and $\left.\left(a_{j}\right)_{j \geq 1}\right)$, the Spectral Mapping Theorem and (2.1), the open ball with center z and radius ε will contain a vector $x \in X$ such that for every $1 \leq i \leq n$ and $k \geq 1$,

$$
\begin{aligned}
\left\|T_{i}^{k} x\right\| & =\left\|S_{(k-1) n+i} x\right\| \geq a_{(k-1) n+i}\left\|S_{(k-1) n+i}\right\|=a_{i, k}\left\|T_{i}^{k}\right\| \\
& \geq C q^{-(i+k)}\left|\lambda_{i}\right|^{k}=C q^{-i}\left|q^{-1} \lambda_{i}\right|^{k} .
\end{aligned}
$$

Since, by the choice of $q,\left|q^{-1} \lambda_{i}\right|^{k} \rightarrow \infty$ as $k \rightarrow \infty$, for every $1 \leq i \leq n$, the above inequalities imply that

$$
\left\|T_{i}^{k} x\right\| \rightarrow \infty \text { as } k \rightarrow \infty, \text { for all } 1 \leq i \leq n,
$$

which completes the proof.
By Theorem 1.1 and Lemma 2.1 alone we can obtain similar result for sequence of operators $\left(T_{i}\right)_{i \geq 1}$ in $B(X)$.

Theorem 2.3. If X is a Banach space and $\left(T_{i}\right)_{i \geq 1}$ is a sequence of operators in $B(X)$ for which there is $\beta>0$ such that $r\left(T_{i}\right)>1+\beta$, for all $i \geq 1$, then there is a dense set $D \subset X$ such that $\operatorname{Orb}\left(T_{i}, x\right)$ tends to infinity for every $x \in D$ and $i \geq 1$. If, in addition, the operators are mutually commuting and have at least one of the properties (P.1) and (P.2) in Lemma 2.1, then for every $n \geq 1$ and every positive integers $i_{1}<i_{2}<\ldots<i_{n}$ the n-tuple orbit $\operatorname{Orb}\left(\left\{T_{i_{j}}\right\}_{j=1}^{n}, x\right)$ tends to infinity for every $x \in D$.

The proof of the first assertion in Theorem 2.3 is given in [6].

The requirement "there is $\beta>0$ such that $r\left(T_{i}\right)>1+\beta$, for all $i \geq 1$ " in Theorem 2.3 can be replaced with the following one: " $r\left(T_{i}\right)>1$, for all $i \geq 1$ ". In order to show this, first we are going to give an appropriate generalization of Corollary 1.3.

Theorem 2.4. If X is a Banach space and $T_{1}, T_{2}, \ldots T_{n} \in B(X)$ are operators satisfying $\sum_{n=1}^{\infty}\left\|T_{i}^{n}\right\|^{-1}<\infty$, for all $1 \leq i \leq n$, then there is a dense set $D \subset X$ such that $\operatorname{Orb}\left(T_{i}, x\right)$ tends to infinity for every $x \in D$ and every $1 \leq i \leq n$. If, in addition, the operators are mutually commuting and have at least one of the properties (P.1) and (P.2) in Lemma 2.1, then the m-tuple orbit $\operatorname{Orb}\left(\left\{T_{i_{j}}\right\}_{j=1}^{m}, x\right)$ tends to infinity for every $x \in D, 1 \leq m \leq n$ and $1 \leq i_{1}<i_{2}<\ldots<i_{m} \leq n$.

Proof. Once again, by Lemma 2.1, it is sufficient to prove the first assertion in the theorem. Let $z \in X$ and $\varepsilon>0$. For $1 \leq i \leq n$, let $\varepsilon_{i}>0$ be such that

$$
\varepsilon_{i}\left(\sum_{k=1}^{\infty}\left\|T_{i}^{k}\right\|^{-1}\right)<\frac{\varepsilon}{2(n+1)} .
$$

By Lemma 1.2 there are sequences of positive numbers $\left(b_{i, k}\right)_{k \geq 1}$ so that $b_{i, k} \rightarrow \infty$ as $k \rightarrow \infty$ and

$$
\sum_{k=1}^{\infty} \varepsilon_{i} b_{i, k}\left\|T_{i}^{k}\right\|^{-1}<\frac{\varepsilon}{2(n+1)} .
$$

For $1 \leq i \leq n$ and $k \in \mathbb{N}$, let $a_{i, k}=\varepsilon_{i} b_{i, k}\left\|T_{i}^{k}\right\|^{-1}$. If the sequence of operators $\left(S_{j}\right)_{j \geq 1}$ and the sequence of positive numbers $\left(a_{j}\right)_{j \geq 1}$ are defined with (2.2), then $\sum_{j \geq 1} a_{j}<\varepsilon / 2$. Hence, by Theorem 1.1, there is a vector $x \in X$ satisfying $\|x-z\|<\varepsilon$ and for every $1 \leq i \leq n$ and $k \geq 1$,

$$
\begin{aligned}
\left\|T_{i}^{k} x\right\| & =\left\|S_{(k-1) n+i} x\right\| \\
& \geq a_{(k-1) n+i}\left\|S_{(k-1) n+i}\right\|=a_{i, k}\left\|T_{i}^{k}\right\|=\varepsilon_{i} b_{i, k}\left\|T_{i}^{k}\right\|^{-1}\left\|T_{i}^{k}\right\|=\varepsilon_{i} b_{i, k} .
\end{aligned}
$$

This implies that

$$
\left\|T_{i}^{k} x\right\| \rightarrow \infty \text { as } k \rightarrow \infty, \text { for all } 1 \leq i \leq n,
$$

which completes the proof.

Theorem 2.5. If X is a Banach space and $\left(T_{i}\right)_{i \geq 1}$ is a sequence of operators in $B(X)$ such that $\sum_{k=1}^{\infty}\left\|T_{i}^{k}\right\|^{-1}<\infty$, for all $i \geq 1$, then there is a dense set $D \subset X$ so that $\operatorname{Orb}\left(T_{i}, x\right)$ tends to infinity for every $x \in D$ and $i \geq 1$. If, in addition, the operators are mutually commuting and have at least one of the properties (P.1) and (P.2) in Lemma 2.1, then for every $n \geq 1$ and every positive integers $i_{1}<i_{2}<\ldots<i_{n}$ the n-tuple orbit $\operatorname{Orb}\left(\left\{T_{i_{j}}\right\}_{j=1}^{n}, x\right)$ tends to infinity for every $x \in D$.

The proof of the first assertion in Theorem 2.5 the is given in [6].
Corollary 2.6. If $\left(T_{i}\right)_{i \geq 1}$ is a sequence in $B(X)$ such that $r\left(T_{i}\right)>1$ for all $i \geq 1$, then there is a dense set $D \subset X$ such that $\operatorname{Orb}\left(T_{i}, x\right)$ tends to infinity for every $x \in D$ and $i \geq 1$. If, in addition, the operators are mutually commuting and have at least one of the properties (P.1) and (P.2) in Lemma 2.1, then for every $n \geq 1$ and every positive integers $i_{1}<i_{2}<\ldots<i_{n}$ the n-tuple orbit $\operatorname{Orb}\left(\left\{T_{i_{j}}\right\}_{j=1}^{n}, x\right)$ tends to infinity for every $x \in D$.

Proof. Let $i \in \mathbb{N}$. Since $r\left(T_{i}\right)>1$ there is $\lambda_{i} \in \sigma\left(T_{i}\right)$ so that $\left|\lambda_{i}\right|>1$. By the Spectral Mapping Theorem, for every $n \in \mathbb{N}, \lambda_{i}^{n} \in \sigma\left(T_{i}^{n}\right)$ and hence,

$$
\left|\lambda_{i}\right|^{n} \leq r\left(T_{i}^{n}\right) \leq\left\|T_{i}^{n}\right\| .
$$

This would imply that

$$
\sum_{n=1}^{\infty}\left\|\left.\left|T_{i}^{n} \|^{-1} \leq \sum_{n=1}^{\infty}\right| \lambda_{i}\right|^{-n}<\infty .\right.
$$

Now the conclusion follows from Theorem 2.5.
Having in mind that every invertible operator is bounded bellow, we have the following corollary.

Corollary 2.7. If $\left(T_{i}\right)_{i \geq 1}$ is a sequence of invertible, mutually commuting operators in $B(X)$ such that $r\left(T_{i}\right)>1$, for all $i \geq 1$, then there is a dense set $D \subset X$ such that for every $n \geq 1$ and every positive integers $i_{1}<i_{2}<\ldots<i_{n}$ the n-tuple orbit $\operatorname{Orb}\left(\left\{T_{i_{j}}\right\}_{j=1}^{n}, x\right)$ will tend to infinity for every $x \in D$.

Competing interests

The authors declare that no competing interests exist.

References

[1] B. Beauzamy, Introduction to operator theory and invariant subspaces, North Holland Math. Library 47, North Holland, Amsterdam, 1988
[2] S. Mančevska, On orbits for pairs of operators on an infinite-dimensional complex Hilbert space, Kragujevac J. Math 30 (2007), 293-304
[3] S. Mančevska, M. Orovčanec, Orbits tending strongly to infinity under pairs of operators on reflexive Banach space, Glasnik Matematicki 43(63) (2008), 195-204
[4] S. Mančevska, M. Orovčanec, Orbits tending to infinity under sequences of operators on Hilbert spaces, Filomat 21:2 (2007), 163-173
[5] S. Mančevska, M. Orovčanec, Orbits tending to infinity under sequences of operators on Banach spaces, International Journal of Pure and Applied Mathematics 47(2) (2008), 175-183
[6] S. Mančevska, M. Orovčanec, Orbits tending to infinity under sequences of operators on Banach spaces II, Math. Maced., Vol. 5 (2007), 57-61
[7] V. Müller, J. Vršovský, Orbits of linear operators tending to infinity, Rocky Mountain J. Math., Vol. 39 No. 1(2009), 219-230
[8] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, (2nd ed.), Operator Theory: Advances and Applications Vol. 139, Birkhäuser Verlag AG, Basel - Boston - Berlin, 2007
[9] S. Rolewicz, On orbits of elements, Stud. Math., 32 (1969), 17-22
[10] A. Tajmouati, Y. Zahouan, Orbit of tuple of operators tending to infinity, International Journal of Pure and Applied Mathematics Vol. 110, No. 4 (2016), 651-656

Faculty of Information and Communication Technologies, University "St. Kliment Ohridski", Bitola, Republic of Macedonia
E-mail address: sonja.manchevska@uklo.edu.mk
Institute of Mathematics, Faculty of Natural Sciences and Mathematics, University of Ss. Cyril and Methodius, Skopje, Republic of Macedonia
E-mail address: marijaor@iunona.pmf.ukim.edu.mk

