
PaKSoM 2021

ISBN: 978-86-80593-72-2 191

Petri Net-Based Model of Peer-to-Peer

Dataset Replication in Big Data

Ilija Hristoski1, Tome Dimovski2

1Faculty of Economics – Prilep, St Kliment Ohridski University – Bitola, Prilepski

Braniteli St 133, Prilep, N. Macedonia
2Faculty of Information and Communication Technologies, St Kliment Ohridski University

– Bitola, Partizanska St, Bitola, N. Macedonia

1ilija.hristoski@uklo.edu.mk, 2tome.dimovski@uklo.edu.mk

Abstract—In the contemporary business

landscape, the Big Data paradigm helps companies

harness their abundant data in their ever-lasting

pursuit for new opportunities. Keeping Big Data

infrastructure highly performant, scalable,

dependable, and available is the key challenge such

companies face with. All of these aspects are

usually addressed by deploying fault-tolerant

systems. Dataset replication is just one of the

crucial operations that has to be carried out

regularly to improve system resilience. The paper

aims at proposing performance models of the

execution of reading and writing operations found

in one of the main architectures involved in dataset

replication: the Peer-to-Peer architecture, based

on the utilization of the class of Generalized

Stochastic Petri Nets. Such models can be utilized

for simulation purposes to obtain various

performance metrics vis-à-vis different working

scenarios including different input parameters.

Keywords – Big Data infrastructure, P2P dataset

replication, read/write operations, performance

modeling, Generalized Stochastic Petri Nets

I. INTRODUCTION

The rising popularity of large-scale
applications, such as social networking, the
Internet of Things, and scientific research, has
resulted in a speedy production of massive
amounts of data belonging to various categories.
Turning ‘Big Data’ into highly valuable insights,
actions and outcomes is a key premise to better
decision making, more effective customer
engagement, sharper competitive edge, hyper-
efficient operations, as well as compelling
product and service development. Because such
data is diverse and distributed on a wide scale,

managing it efficiently represents a considerable
problem. Attaining adequate data availability
raises serious challenges to companies that have
adopted the Big Data paradigm. Nonetheless,
providing high-performance levels, i.e. timely
responses to read/write queries against ever-
increasing data volumes, became of utmost
importance and priority in the Big Data world. In
this context, the process of storing the same data
in multiple locations, known as ‘data
replication’, allows for increased data
availability and accessibility, reduced data access
costs, and improved fault tolerance. It also
improves Big Data systems’ resilience and
reliability. All of these have become, de facto, a
must-have for successful digital transformation
in a global economy.

Realizing the importance of the concept of
dataset replication in today’s business
environment, in this paper, we develop and
present performance models of the execution of
the READ and the WRITE requests in Peer-to-
Peer (P2P) dataset replicated architecture with
two nodes/peers, based on the class of
Generalized Stochastic Petri Nets (GSPNs).

The paper is structured as follows. Section II
briefly overviews the recent research made on
this topic. Section III elaborates the notion of
dataset replication. The class of GSPNs is
explained in Section IV. Section V introduces
GSPN sub-models depicting the processing of
both the READ and the WRITE requests in a P2P
dataset replicated architecture with two
nodes/peers. The related discussion is subject to
Section VI. The last section concludes.

192

II. RELATED RESEARCH

Since their emergence in the late ’90s of the
XX century, various classes of stochastic Petri
nets have been regularly utilized for performance
analysis of replicated systems. Lately, those
classes of PNs are being used for modeling and
evaluation of Big Data systems’ infrastructural
and architectural components. What follows is a
brief overview of the related research.

A Stochastic Petri Net model of a replicated
file system in a distributed environment, where
replicated files reside on different hosts and a
voting algorithm is used to maintain consistency,
as described in [1].

Reference [2] focuses on the implementation
and evaluation of Petri Net-based formal models
of execution of various operations performed on
data within the Big Data paradigm, including
replication, through the newly introduced
concept of Active Data programming model,
which allows code execution at each stage of the
data life cycle.

Some of the recent studies that have been
carried out have been focused on HDFS, the
main component of Hadoop, which provides a
Big Data storage service, where data is reliably
kept in a distributed fashion on different servers.
In one such study, the development of a
mathematical model, aimed at representing the
storage service activities of HDFS and
formulating its dependability attributes, has been
proposed, based on the utilization of Stochastic
Petri Nets. Such a model accurately quantifies
two important dependability metrics – reliability
and availability of HDFS [3].

Reference [4] discusses the adoption of Petri
Nets (PNs) in creating a visual model of the
MapReduce framework to analyze its
reachability property, by presenting a real big
data analysis system to demonstrate the
feasibility of the proposed PN model. The model
is then used to describe the internal procedure of
the MapReduce framework in detail, to list
common errors, and to propose an error
prevention mechanism.

Recognizing the fact that data replication is
not only a costly process but also a wastage of
energy resources, Rizwan Ali et al. have applied
the class of Colored Petri Nets (CPNs) for both
modeling and analysis, to address resource
utilization issues of CAROM, a hybrid file
system [5].

III. PEER-TO-PEER DATASET REPLICATION

A plethora of novel storage strategies and
technologies have been invented to achieve
efficient, cost-effective, and highly scalable
storage solutions, due to the necessity to store
large Big Data datasets, often in multiple copies.
The term ‘Big Data storage’ refers to the
infrastructure that is designed specifically to
store, manage and retrieve massive amounts of
data in such a way that data can easily be
accessed, used, and processed by Big Data
applications and services. It is a compute-and-
storage architecture that can be used to collect
and manage huge-scale datasets and perform
real-time data analytics. To fulfill its purpose,
Big Data storage primarily supports storage and
input/output (read/write) operations on storage
with a very large number of data files and
objects.

One of the underlying mechanisms behind
Big Data storage technology is dataset
replication. Reference [6] points out that
“replication stores multiple copies of a dataset,
known as replicas, on multiple nodes.” It
provides high scalability and availability because
“the same data is replicated on various nodes.”
The achieved data redundancy ensures that data
cannot be lost when a single node fails, i.e.
replication ensures fault tolerance of the Big Data
infrastructure and therefore it significantly
improves system resilience and reliability.

In this paper, we put the focus on Peer-to-
Peer (P2P) dataset replication, an alternative
method to Master/Slave dataset replication. With
P2P replication, all nodes operate at the same
level. Each node, known as a peer, is equally
capable of handling both READ and WRITE
requests. However, each write is copied to all
peers simultaneously, whilst data is read from
just one peer, no matter which one, as portrayed
in Fig. 1 [6].

In Fig. 1, the load balancer is distributing
users’ WRITE requests evenly between the two
nodes/peers. WRITE requests refer to the
insertion, update, and delete operations on the
Big Data dataset, held within identical replicas
across all nodes.

There are two common approaches in
deploying P2P replication. According to the first
one, which does not include a load balancer, each
single WRITE request is being simultaneously
sent to and carried out on all nodes. According to
the second approach, which includes a load

193

balancer, the WRITE request is first being
processed solely on one of the nodes (e.g. Node
#1), and then, after the replication occurs among
the nodes, the dataset residing on Node #2 gets
updated, and Replica B becomes identical to
Replica A.

In both approaches, users’ READ requests
are being also distributed evenly across peers
through the process of load balancing. In this
case, the read operation is being carried out using
any of the nodes, under the assumption that each
of them maintains updated and identical datasets.

It should be notified that P2P replication is
susceptible to write inconsistencies, which can
occur as a result of the late concurrent
propagation of updates of the same data across
numerous peers. This issue, however, can be
addressed by implementing either a pessimistic
or an optimistic concurrency strategy [6].

IV. GENERALIZED STOCHASTIC PETRI NETS

The class of Generalized Stochastic Petri
Nets (GSPNs), which belongs to the family of
Markovian stochastic Petri Nets, has been widely
utilized for performance and reliability modeling
and evaluation of complex distributed systems
(manufacturing systems, multiprocessor
systems, control systems, communication
protocols, organizational activities, hardware and
software systems, etc.), showing non-
deterministic behavior. GSPNs are a graphical
tool intended for formal description of discrete-
event dynamic systems that exhibit
characteristics of concurrency, synchronization,
parallelism, mutual exclusion, blocking, and
conflict, as well as a mathematical tool, aimed at
carrying out advanced formal analysis [7][8].

GSPNs represent bipartite graphs, consisting
of two classes of nodes (places and transitions),
as well as directed arcs connecting particular
nodes. They utilize two types of transitions: (a)
exponentially distributed timed transitions,
drawn as thick empty bars, used for modeling of
random delays associated with the execution of
activities, and (b) immediate transitions, drawn
as thin black-colored bars, used for representing
logical actions that do not consume time. The
latter ones allow for the modeling of branching
probabilities that are independent of timing
specifications. In general, transitions represent
events. An event occurs when the corresponding
transition fires. Besides transitions, a GSPN
model also includes places, drawn as non-
colored circles, which represent conditions.
Tokens, drawn as small black-colored circles, are
always put into places; they circulate throughout
the GSPN model by moving from a place to a
place when transitions fire, thus denoting
conditions holding at any given time. Directed
arcs, which are drawn from places to transitions,
and from transitions to places, are used to
indicate which combination of conditions must
hold for an event to occur (i.e. a transition to fire),
and which combination of conditions holds after
the event occurs. Each arc also has a
multiplicity/weight value that indicates the
number of tokens required from a source place,
or the number of tokens provided to a target
place. A transition fires only if it is enabled, i.e.
if all of its input places contain at least one token.
Depending on the multiplicity of input and
output arcs attached to a transition, firing it
removes at least one token from each input place,
and puts at least one token into each output place
it is connected to. This is equivalent to an event

Figure 1. Schematic representation of a P2P dataset

replication using two peers and load balancing.

194

that is enabled by a combination of conditions.
GSPN models also support the usage of inhibitor
arcs, which are always drawn from places to
transitions, and end with a small circle, meaning
that the transition is disabled when its input place
is marked with at least one token. Any
distribution of tokens over the places in a GSPN
model represents a specific configuration, known
as a marking. The markings in a GSPN model in
which only exponential transitions are enabled
are known as tangible markings. All other
markings are vanishing markings, which specify
logical changes in the modeled system.

The performance evaluation of the analyzed
system using GSPNs includes the following four
stages: (1) Modeling the observed system using
a GSPN; (2) Generating the reachability
graph/tree through a marking process; (3)
Computing the steady-state probability
distribution by solving the resulting reachability
graph as a Markov chain; (4) Obtaining the
required performance measures from the steady-
state probabilities.

V. GSPN-BASED MODELS OF READ/WRITE

OPERATIONS IN P2P DATASET REPLICATION

Having minded the famous quote attributed
to the prominent British statistician George E. P.
Box, stating that “all models are wrong but some
models are useful.” we present two GSPN-based
models in the subsequent sections. Both models
refer to the P2P dataset replication architecture
with two nodes/peers. The first one portrays the
execution of a single WRITE request, whilst the
second one models the execution of a single
READ request. In both models, a ‘Round Robin’
load-balancing scheme of the incoming requests
is being implemented.

A. Processing of WRITE requests: the model

Fig. 2 shows the GSPN model of the
execution of a single WRITE request. The firing
of the exponential transition T_write_request,
which occurs with a rate of λWRITE_REQUESTS,
sends the WRITE request to the load balancer (a
token in the place P_write_request). After Node
#1 (Peer #1) is being selected to process the
request (a token in the place P_n1_selected), the
processing of the WRITE request can start only
if Node #1 is idle (a token in the place
P_n1_idle). The time needed to process the
WRITE request is exponentially distributed and
its mean equals 1/μWRITE. After processing the
WRITE request by Node #1 (a token in the place

P_n1_write_end), a token is being put into the
place P_n2_start, to process the same WRITE
request on the peering dataset. At the same time,
the firing of the immediate transition
T_replicate_to_n2 also puts a token into the
place P_n1_to_n2, which indicates that the
processing that is going to happen on Node #2 is
a result of a replication process, not a result of the
initial processing of a WRITE request coming
directly from the load balancer. The replication,
i.e. the processing of the WRITE request coming
from Node #1 on Node #2 occurs only if Node
#2 is idle (a token in the place P_n2_idle). The
dataset residing on Node #2 is being updated by
the firing of the exponential transition
T_n2_write, which fires with a rate of μWRITE.
This puts a token in the place P_n2_write_end,
which is an input place for two immediate
transitions. The first one is transition
T_do_not_replicate_to_n1, which becomes
enabled as soon as there is a token in the place
P_n1_to_n2. The firing of this transition means
that the dataset residing on Node #1 has been
replicated to Node #2 (a token in the place
P_n1_replicated). The second immediate
transition, to which the place P_n2_write_end
represents an input place, is T_replicate_to_n1,
which becomes enabled if there is no token in the
place P_n1_to_n2, due to the inhibitor arc
originating from this place. The firing of the
enabled immediate transition T_replicate_to_n1
means that the WRITE request has been
previously processed for the first time by Node
#2 and it is sent to Node #1 to be processed for
dataset updating purposes, i.e. replication. It can
happen only if Node #1 is idle, i.e. if there is a
token in the place P_n1_idle.

The inclusion of the GSPN segment
resembling the load balancer in the model shown
in Fig. 1, albeit unnecessary, is made just for
consistency and completeness reasons because
the modeled system shows the processing of a
single WRITE request.

B. Processing of READ requests: the model

The execution of a single READ request is
being described by the GSPN model, portrayed
in Fig. 3. The firing of the exponential transition
T_read_request, which occurs with a rate of
λREAD_REQUESTS, sends the READ request to the
load balancer (a token in the place
P_read_request). Initially, Node #1 is being
selected for its processing.

195

Before execution of the reading operation,
the searching operation upon data that need to be
read is being carried out on the dataset stored
within Node #1, i.e. a token in the place
P_n1_search_start is being put if the Node #1 is
idle (a token in the place P_n1_idle). The firing
of the exponential transition T_n1_search
occurs with a rate of μSEARCH, which puts a token
back to the place P_n1_idle, and also puts a
token into the place P_n1_search_end. The
outcome of the searching operation can be
twofold: (a) either the searched data has been
found (immediate transition T_n1_found
becomes enabled, and fires with a probability of
pFOUND), or (b) the searched data has not been
found (immediate transition T_n1_not_found

becomes enabled, and fires with a probability of

1 pFOUND). If the latter one happens, a token
will be put in the place P_n1_not_found1.
However, if the immediate transition
T_n1_found fires, the reading operation starts (a
token in the place P_n1_read_start enables the
exponential transition T_n1_read). The reading
of data lasts, on average, 1/μREAD units of time.
After the exponential transition T_n1_read fires,
a token is being put in the place P_n1_read_end.
In this particular case, the immediate transition
T_OR1 becomes enabled, since there are no
tokens in the place P_n2_not_found2 (i.e. the
READ request has not been processed by Node
#2).

Figure 2. GSPN model of the processing of a single WRITE request in a P2P replicated architecture with two nodes.

196

Note that the arc originating from this place
to transition T_OR1 has a multiplicity of
#P_n2_not_found2, i.e. it is equal to the number
of tokens currently present in the place
P_n2_not_found2. The firing of the immediate
transition T_OR1 puts a token into the terminal
place P_read_end.

If the searched data is not found in the
dataset residing on Node #1, the searching
operation is being executed on the dataset
residing on Node #2, because the READ request
can be processed by any peer. This is
accomplished by the firing of the immediate
transition T_search_n2, which takes the token
out from the place P_n1_not_found1 and puts it
into the place P_n2_selected. This transition is

being enabled due to the existence of an inhibitor
arc coming from the place P_n2_not_found2,
and due to the absence of a token in this place,
meaning that the search operation has not been
carried out on Node #2 yet.

Given a token in the place P_n2_selected,
the immediate transition T_n2_search_start
fires, but only if Node #2 is idle (a token in the
place P_n2_idle). The firing of this transition
puts a token into the place P_n2_search_start,
which enables the exponential transition
T_n2_search. It fires with a rate of μSEARCH and
puts a token into the place P_n2_search_end.
Now two immediate transitions become
concurrently enabled: the transition T_n2_found
(meaning that the searched data has not been

Figure 3. GSPN model of the processing of a single READ request in a P2P replicated architecture with two nodes.

197

found within the dataset held in Node #2) and
the transition T_n2_not_found. The first one
fires with a probability of pFOUND, and the latter

one with a probability of 1 pFOUND.

If the searched data is found on Node #2, the
reading operation starts by placing a token into
the place P_n2_read_start, which enables the
exponential transition T_n2_read, but only if the
Node #2 is idle at that moment (a token in the
place P_n2_idle). After 1/μREAD units of time,
the exponential transition T_n2_read fires and
puts a token into the place P_n2_read_end.
Because there is already a token residing in the
place P_n1_not_found2 (the reading operation
failed on Node #1 because the searched data
were not found), the immediate transition
T_OR2 becomes enabled and immediately fires,
by putting a token into the terminal place
P_read_end.

On the other hand, if the searched data is not
found on Node #2 (a token in the place
P_n2_not_found1), after it was not found also
on Node #1 (a token in the place
P_n1_not_found2), the immediate transition
T_AND2 becomes enabled and fires, by taking
out the tokens from both previously mentioned
places and by putting a token in the terminal
place P_not_found. Note that, given a token in
the place P_n2_not_found1, the immediate
transition T_search_n1 remains disabled,
because of the existence of an inhibitor arc
originating from the place P_n1_not_found2,
which already contains a token (the searched
data was not found in the dataset residing on
Node #1).

VI. DISCUSSION

The GSPN sub-model related to the
processing of the WRITE request contains a
single starting place (P_write_start) and two
terminal places (P_n1_replicated and
P_n2_replicated). A token in the place
P_n1_replicated means that the writing
operation has been initially executed on Node #1
and afterward the WRITE request has been also
processed on Node #2 so that both dataset
replicas become identical. In the same manner, a
token in the place P_n2_replicated means that
the writing operation has been initially executed
on Node #2, and subsequently the WRITE
request has been also processed by Node #1 so
that both dataset replicas become identical. It
should be also notified that this particular sub-
model does not include/model the operation of

accessing the dataset before the execution of the
writing operation, for simplicity purposes.

The GSPN sub-model related to the
processing of a READ request contains a single
starting place (P_read_start) and two terminal
places (P_read_end and P_not_found). A token
in the place P_read_end means that the READ
request has been successfully addressed by
either of the two peers, regardless of which one
of them initially processed the request. On the
other hand, a token in the place P_not_found
means that none of the peers contain the
searched data to be read in their replicated
datasets, so none of them can successfully
address the READ request.

The list of input parameters for both GSPN
sub-models, as well as their meaning, is given in
Table I.

The verification process of the two proposed
GSPN sub-models, which includes structural
analysis (estimation of the state-space,
evaluation of traps and siphons, finding out P-
and t-invariants), has been carried out using
TimeNET 4.5 [9], but other dedicated software
packages, such as PIPE 2 [10] and GreatSPN 2.0
[11] can be utilized for this purpose, as well. It
proved that both sub-models are accurate and
capture the intrinsic logic and behavior of the real
P2P replicated system with two nodes. However,
the validation process, which aims at proving the
credibility of the sub-models, has yet to be
performed, by comparing the results of the
stationary and transient analysis against a real
P2P replicated system with two nodes/peers.

TABLE I. INPUT PARAMETERS.

Parameter Meaning

λWRITE_REQUESTS WRITE requests’ arrival rate

μWRITE WRITE requests’ processing rate

λREAD_REQUESTS READ requests’ arrival rate

μSEARCH
SEARCH operation processing
rate

μREAD READ requests’ processing rate

pFOUND
Probability of finding the searched
data during the execution of READ
requests

The next process to be conducted is a
performance analysis (both stationary and
transient). The stationary analysis is particularly
important, since it results in obtaining the steady-

198

state probabilities of the modeled systems, either
analytically, or by computer simulation.

Finally, both GSPN sub-models can be
slightly modified and merged into a single model
to capture the behavior of the P2P replicated
system under simultaneous READ and WRITE
requests. This could lead to a complex GSPN
model in which the only common building
elements should be the places P_n1_idle and
P_n2_idle.

VII. CONCLUSION

The paper contributes towards the
performance evaluation of Peer-to-Peer
replicated architectures, often utilized within the
Big Data paradigm, by presenting suitable
GSPN-based models of the execution of the
READ and WRITE requests. The proposed
GSPN-based models of the two types of request
can provide significant insights vis-à-vis the
performance of the modeled system, by
obtaining the following performance metrics for
various operating scenarios: the average
response time, the average queue lengths, the
average number of the READ and WRITE
requests waiting in queues to be processed by
peers, peers’ throughput as a function of
requests’ arrival rate, peers’ utilization, etc.

In this particular case, there are three obvious
limitations associated with GSPN modeling. The
first one states that the hereby presented GSPN
models do not allow for distinguishing among
different types of WRITE requests (insertion,
update, and delete operations), so if there is a
need for their representation, each of them should
be modeled by a distinct GSPN substructure,
which would considerably increase the
complexity of the overall GSPN model. Next,
GSPNs do not allow for modeling other load
balancing approaches, except the ‘Round Robin’
and the ‘Ad Hoc’ schemes. The third limitation
refers to the fact that GSPN-based models of the
READ and WRITE requests would become
increasingly complex as the number of portrayed
peers rise. The increased complexity of the
GSPN model can incur computational
intractability and an inability to successfully
evaluate any performance metrics.

Future work will be directed towards a
performance analysis of the proposed GSPN sub-
models vis-à-vis various input parameters, i.e.
various operating scenarios, and conveying a
comparative analysis of the obtained results with
those yielded by the performance analysis of
corresponding GSPN-based sub-models
representing the execution of the READ and
WRITE requests within a Master/Slave
replicated architecture.

REFERENCES

[1] Dugan, J. B., & Ciardo, G. (1997). Stochastic Petri Net
analysis of a replicated file system. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.16.748&rep=rep1&type=pdf

[2] Simonet, A., Fedak, G., Ripeanu, M. (2012). Active
Data: A programming model for managing Big Data
life cycle. Research Report No. 8062. Inria, Le
Chesnay Cedex, France.

[3] Chattaraj, D., Sarma, M., & Samanta, D. (2019).
Stochastic Petri net based modeling for analyzing
dependability of big data storage system. In Emerging
Technologies in Data Mining and Information
Security (pp. 473-484). Springer, Singapore.

[4] Chiang, D.-L., Wang, S.-K., Wang, Y.-Y., Lin, Y.-N.,
Hsieh, T.-Y., Yang, C.-Y., Shen, V. R. L., & Ho, H.-
W. (2021): Modeling and analysis of Hadoop
MapReduce systems for Big Data using Petri Nets.
Applied Artificial Intelligence, 35(1), 1−25.

[5] Rizwan Ali, M., Ahmad, F., Hasanain Chaudary, M.,
Ashfaq Khan, Z., Alqahtani, M. A., Saad Alqurni, J.,
Ullah, Z., & Khan, W. U. (2021). Petri Net based
modeling and analysis for improved resource
utilization in cloud computing. PeerJ Computer
Science, 7, e351.

[6] Erl, T., Khattak, W., & Buhler, P. (2015). Big Data
fundamentals: Concepts, drivers and techniques.
North Vancouver, Canada: Prentice-Hall/Arcitura
Education, Inc..

[7] Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli,
S., & Franceschinis, G. (1995). Modelling with
Generalised Stochastic Petri Nets. Hoboken, NJ, USA:
John Wiley & Sons, Inc..

[8] Balbo, G. (2007, May). Introduction to generalized
stochastic Petri nets. In International school on formal
methods for the design of computer, communication
and software systems (pp. 83-131). Springer, Berlin,
Heidelberg.

[9] TimeNET 4.5 Official Website (2021). Available at:
https://timenet.tu-ilmenau.de/#/

[10] PIPE 2 Official Website. Available at:
http://pipe2.sourceforge.net/

[11] GreatSPN 2.0 Official Website (2008). Available at:
http://www.di.unito.it/~greatspn/ index.html

