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Abstract—In the contemporary business 

landscape, the Big Data paradigm helps companies 

harness their abundant data in their ever-lasting 

pursuit for new opportunities. Keeping Big Data 

infrastructure highly performant, scalable, 

dependable, and available is the key challenge such 

companies face with. All of these aspects are 

usually addressed by deploying fault-tolerant 

systems. Dataset replication is just one of the 

crucial operations that has to be carried out 

regularly to improve system resilience. The paper 

aims at proposing performance models of the 

execution of reading and writing operations found 

in one of the main architectures involved in dataset 

replication: the Peer-to-Peer architecture, based 

on the utilization of the class of Generalized 

Stochastic Petri Nets. Such models can be utilized 

for simulation purposes to obtain various 

performance metrics vis-à-vis different working 

scenarios including different input parameters. 
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I.  INTRODUCTION 

The rising popularity of large-scale 
applications, such as social networking, the 
Internet of Things, and scientific research, has 
resulted in a speedy production of massive 
amounts of data belonging to various categories. 
Turning ‘Big Data’ into highly valuable insights, 
actions and outcomes is a key premise to better 
decision making, more effective customer 
engagement, sharper competitive edge, hyper-
efficient operations, as well as compelling 
product and service development. Because such 
data is diverse and distributed on a wide scale, 

managing it efficiently represents a considerable 
problem. Attaining adequate data availability 
raises serious challenges to companies that have 
adopted the Big Data paradigm. Nonetheless, 
providing high-performance levels, i.e. timely 
responses to read/write queries against ever-
increasing data volumes, became of utmost 
importance and priority in the Big Data world. In 
this context, the process of storing the same data 
in multiple locations, known as ‘data 
replication’, allows for increased data 
availability and accessibility, reduced data access 
costs, and improved fault tolerance. It also 
improves Big Data systems’ resilience and 
reliability. All of these have become, de facto, a 
must-have for successful digital transformation 
in a global economy. 

Realizing the importance of the concept of 
dataset replication in today’s business 
environment, in this paper, we develop and 
present performance models of the execution of 
the READ and the WRITE requests in Peer-to-
Peer (P2P) dataset replicated architecture with 
two nodes/peers, based on the class of 
Generalized Stochastic Petri Nets (GSPNs). 

The paper is structured as follows. Section II 
briefly overviews the recent research made on 
this topic. Section III elaborates the notion of 
dataset replication. The class of GSPNs is 
explained in Section IV. Section V introduces 
GSPN sub-models depicting the processing of 
both the READ and the WRITE requests in a P2P 
dataset replicated architecture with two 
nodes/peers. The related discussion is subject to 
Section VI. The last section concludes. 



192 

II. RELATED RESEARCH 

Since their emergence in the late ’90s of the 
XX century, various classes of stochastic Petri 
nets have been regularly utilized for performance 
analysis of replicated systems. Lately, those 
classes of PNs are being used for modeling and 
evaluation of Big Data systems’ infrastructural 
and architectural components. What follows is a 
brief overview of the related research. 

A Stochastic Petri Net model of a replicated 
file system in a distributed environment, where 
replicated files reside on different hosts and a 
voting algorithm is used to maintain consistency, 
as described in [1]. 

Reference [2] focuses on the implementation 
and evaluation of Petri Net-based formal models 
of execution of various operations performed on 
data within the Big Data paradigm, including 
replication, through the newly introduced 
concept of Active Data programming model, 
which allows code execution at each stage of the 
data life cycle. 

Some of the recent studies that have been 
carried out have been focused on HDFS, the 
main component of Hadoop, which provides a 
Big Data storage service, where data is reliably 
kept in a distributed fashion on different servers. 
In one such study, the development of a 
mathematical model, aimed at representing the 
storage service activities of HDFS and 
formulating its dependability attributes, has been 
proposed, based on the utilization of Stochastic 
Petri Nets. Such a model accurately quantifies 
two important dependability metrics – reliability 
and availability of HDFS [3]. 

Reference [4] discusses the adoption of Petri 
Nets (PNs) in creating a visual model of the 
MapReduce framework to analyze its 
reachability property, by presenting a real big 
data analysis system to demonstrate the 
feasibility of the proposed PN model. The model 
is then used to describe the internal procedure of 
the MapReduce framework in detail, to list 
common errors, and to propose an error 
prevention mechanism. 

Recognizing the fact that data replication is 
not only a costly process but also a wastage of 
energy resources, Rizwan Ali et al. have applied 
the class of Colored Petri Nets (CPNs) for both 
modeling and analysis, to address resource 
utilization issues of CAROM, a hybrid file 
system [5]. 

III. PEER-TO-PEER DATASET REPLICATION 

A plethora of novel storage strategies and 
technologies have been invented to achieve 
efficient, cost-effective, and highly scalable 
storage solutions, due to the necessity to store 
large Big Data datasets, often in multiple copies. 
The term ‘Big Data storage’ refers to the 
infrastructure that is designed specifically to 
store, manage and retrieve massive amounts of 
data in such a way that data can easily be 
accessed, used, and processed by Big Data 
applications and services. It is a compute-and-
storage architecture that can be used to collect 
and manage huge-scale datasets and perform 
real-time data analytics. To fulfill its purpose, 
Big Data storage primarily supports storage and 
input/output (read/write) operations on storage 
with a very large number of data files and 
objects.  

One of the underlying mechanisms behind 
Big Data storage technology is dataset 
replication. Reference [6] points out that 
“replication stores multiple copies of a dataset, 
known as replicas, on multiple nodes.” It 
provides high scalability and availability because 
“the same data is replicated on various nodes.” 
The achieved data redundancy ensures that data 
cannot be lost when a single node fails, i.e. 
replication ensures fault tolerance of the Big Data 
infrastructure and therefore it significantly 
improves system resilience and reliability. 

In this paper, we put the focus on Peer-to-
Peer (P2P) dataset replication, an alternative 
method to Master/Slave dataset replication. With 
P2P replication, all nodes operate at the same 
level. Each node, known as a peer, is equally 
capable of handling both READ and WRITE 
requests. However, each write is copied to all 
peers simultaneously, whilst data is read from 
just one peer, no matter which one, as portrayed 
in Fig. 1 [6]. 

In Fig. 1, the load balancer is distributing 
users’ WRITE requests evenly between the two 
nodes/peers. WRITE requests refer to the 
insertion, update, and delete operations on the 
Big Data dataset, held within identical replicas 
across all nodes. 

There are two common approaches in 
deploying P2P replication. According to the first 
one, which does not include a load balancer, each 
single WRITE request is being simultaneously 
sent to and carried out on all nodes. According to 
the second approach, which includes a load 
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balancer, the WRITE request is first being 
processed solely on one of the nodes (e.g. Node 
#1), and then, after the replication occurs among 
the nodes, the dataset residing on Node #2 gets 
updated, and Replica B becomes identical to 
Replica A. 

In both approaches, users’ READ requests 
are being also distributed evenly across peers 
through the process of load balancing. In this 
case, the read operation is being carried out using 
any of the nodes, under the assumption that each 
of them maintains updated and identical datasets. 

It should be notified that P2P replication is 
susceptible to write inconsistencies, which can 
occur as a result of the late concurrent 
propagation of updates of the same data across 
numerous peers. This issue, however, can be 
addressed by implementing either a pessimistic 
or an optimistic concurrency strategy [6]. 

 

IV. GENERALIZED STOCHASTIC PETRI NETS 

The class of Generalized Stochastic Petri 
Nets (GSPNs), which belongs to the family of 
Markovian stochastic Petri Nets, has been widely 
utilized for performance and reliability modeling 
and evaluation of complex distributed systems 
(manufacturing systems, multiprocessor 
systems, control systems, communication 
protocols, organizational activities, hardware and 
software systems, etc.), showing non-
deterministic behavior. GSPNs are a graphical 
tool intended for formal description of discrete-
event dynamic systems that exhibit 
characteristics of concurrency, synchronization, 
parallelism, mutual exclusion, blocking, and 
conflict, as well as a mathematical tool, aimed at 
carrying out advanced formal analysis [7][ 8]. 

GSPNs represent bipartite graphs, consisting 
of two classes of nodes (places and transitions), 
as well as directed arcs connecting particular 
nodes. They utilize two types of transitions: (a) 
exponentially distributed timed transitions, 
drawn as thick empty bars, used for modeling of 
random delays associated with the execution of 
activities, and (b) immediate transitions, drawn 
as thin black-colored bars, used for representing 
logical actions that do not consume time. The 
latter ones allow for the modeling of branching 
probabilities that are independent of timing 
specifications. In general, transitions represent 
events. An event occurs when the corresponding 
transition fires. Besides transitions, a GSPN 
model also includes places, drawn as non-
colored circles, which represent conditions. 
Tokens, drawn as small black-colored circles, are 
always put into places; they circulate throughout 
the GSPN model by moving from a place to a 
place when transitions fire, thus denoting 
conditions holding at any given time. Directed 
arcs, which are drawn from places to transitions, 
and from transitions to places, are used to 
indicate which combination of conditions must 
hold for an event to occur (i.e. a transition to fire), 
and which combination of conditions holds after 
the event occurs. Each arc also has a 
multiplicity/weight value that indicates the 
number of tokens required from a source place, 
or the number of tokens provided to a target 
place. A transition fires only if it is enabled, i.e. 
if all of its input places contain at least one token. 
Depending on the multiplicity of input and 
output arcs attached to a transition, firing it 
removes at least one token from each input place, 
and puts at least one token into each output place 
it is connected to. This is equivalent to an event 

 
Figure 1.  Schematic representation of a P2P dataset 

replication using two peers and load balancing. 
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that is enabled by a combination of conditions. 
GSPN models also support the usage of inhibitor 
arcs, which are always drawn from places to 
transitions, and end with a small circle, meaning 
that the transition is disabled when its input place 
is marked with at least one token. Any 
distribution of tokens over the places in a GSPN 
model represents a specific configuration, known 
as a marking. The markings in a GSPN model in 
which only exponential transitions are enabled 
are known as tangible markings. All other 
markings are vanishing markings, which specify 
logical changes in the modeled system. 

The performance evaluation of the analyzed 
system using GSPNs includes the following four 
stages: (1) Modeling the observed system using 
a GSPN; (2) Generating the reachability 
graph/tree through a marking process; (3) 
Computing the steady-state probability 
distribution by solving the resulting reachability 
graph as a Markov chain; (4) Obtaining the 
required performance measures from the steady-
state probabilities. 

V. GSPN-BASED MODELS OF READ/WRITE 

OPERATIONS IN P2P DATASET REPLICATION 

Having minded the famous quote attributed 
to the prominent British statistician George E. P. 
Box, stating that “all models are wrong but some 
models are useful.” we present two GSPN-based 
models in the subsequent sections. Both models 
refer to the P2P dataset replication architecture 
with two nodes/peers. The first one portrays the 
execution of a single WRITE request, whilst the 
second one models the execution of a single 
READ request. In both models, a ‘Round Robin’ 
load-balancing scheme of the incoming requests 
is being implemented. 

A. Processing of WRITE requests: the model 

Fig. 2 shows the GSPN model of the 
execution of a single WRITE request. The firing 
of the exponential transition T_write_request, 
which occurs with a rate of λWRITE_REQUESTS, 
sends the WRITE request to the load balancer (a 
token in the place P_write_request). After Node 
#1 (Peer #1) is being selected to process the 
request (a token in the place P_n1_selected), the 
processing of the WRITE request can start only 
if Node #1 is idle (a token in the place 
P_n1_idle). The time needed to process the 
WRITE request is exponentially distributed and 
its mean equals 1/μWRITE. After processing the 
WRITE request by Node #1 (a token in the place 

P_n1_write_end), a token is being put into the 
place P_n2_start, to process the same WRITE 
request on the peering dataset. At the same time, 
the firing of the immediate transition 
T_replicate_to_n2 also puts a token into the 
place P_n1_to_n2, which indicates that the 
processing that is going to happen on Node #2 is 
a result of a replication process, not a result of the 
initial processing of a WRITE request coming 
directly from the load balancer. The replication, 
i.e. the processing of the WRITE request coming 
from Node #1 on Node #2 occurs only if Node 
#2 is idle (a token in the place P_n2_idle). The 
dataset residing on Node #2 is being updated by 
the firing of the exponential transition 
T_n2_write, which fires with a rate of μWRITE. 
This puts a token in the place P_n2_write_end, 
which is an input place for two immediate 
transitions. The first one is transition 
T_do_not_replicate_to_n1, which becomes 
enabled as soon as there is a token in the place 
P_n1_to_n2. The firing of this transition means 
that the dataset residing on Node #1 has been 
replicated to Node #2 (a token in the place 
P_n1_replicated). The second immediate 
transition, to which the place P_n2_write_end 
represents an input place, is T_replicate_to_n1, 
which becomes enabled if there is no token in the 
place P_n1_to_n2, due to the inhibitor arc 
originating from this place. The firing of the 
enabled immediate transition T_replicate_to_n1 
means that the WRITE request has been 
previously processed for the first time by Node 
#2 and it is sent to Node #1 to be processed for 
dataset updating purposes, i.e. replication. It can 
happen only if Node #1 is idle, i.e. if there is a 
token in the place P_n1_idle. 

The inclusion of the GSPN segment 
resembling the load balancer in the model shown 
in Fig. 1, albeit unnecessary, is made just for 
consistency and completeness reasons because 
the modeled system shows the processing of a 
single WRITE request. 

B. Processing of READ requests: the model 

The execution of a single READ request is 
being described by the GSPN model, portrayed 
in Fig. 3. The firing of the exponential transition 
T_read_request, which occurs with a rate of 
λREAD_REQUESTS, sends the READ request to the 
load balancer (a token in the place 
P_read_request). Initially, Node #1 is being 
selected for its processing. 
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Before execution of the reading operation, 
the searching operation upon data that need to be 
read is being carried out on the dataset stored 
within Node #1, i.e. a token in the place 
P_n1_search_start is being put if the Node #1 is 
idle (a token in the place P_n1_idle). The firing 
of the exponential transition T_n1_search 
occurs with a rate of μSEARCH, which puts a token 
back to the place P_n1_idle, and also puts a 
token into the place P_n1_search_end. The 
outcome of the searching operation can be 
twofold: (a) either the searched data has been 
found (immediate transition T_n1_found 
becomes enabled, and fires with a probability of 
pFOUND), or (b) the searched data has not been 
found (immediate transition T_n1_not_found 

becomes enabled, and fires with a probability of 

1  pFOUND). If the latter one happens, a token 
will be put in the place P_n1_not_found1. 
However, if the immediate transition 
T_n1_found fires, the reading operation starts (a 
token in the place P_n1_read_start enables the 
exponential transition T_n1_read). The reading 
of data lasts, on average, 1/μREAD units of time. 
After the exponential transition T_n1_read fires, 
a token is being put in the place P_n1_read_end. 
In this particular case, the immediate transition 
T_OR1 becomes enabled, since there are no 
tokens in the place P_n2_not_found2 (i.e. the 
READ request has not been processed by Node 
#2). 

 

Figure 2.  GSPN model of the processing of a single WRITE request in a P2P replicated architecture with two nodes. 
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Note that the arc originating from this place 
to transition T_OR1 has a multiplicity of 
#P_n2_not_found2, i.e. it is equal to the number 
of tokens currently present in the place 
P_n2_not_found2. The firing of the immediate 
transition T_OR1 puts a token into the terminal 
place P_read_end. 

If the searched data is not found in the 
dataset residing on Node #1, the searching 
operation is being executed on the dataset 
residing on Node #2, because the READ request 
can be processed by any peer. This is 
accomplished by the firing of the immediate 
transition T_search_n2, which takes the token 
out from the place P_n1_not_found1 and puts it 
into the place P_n2_selected. This transition is 

being enabled due to the existence of an inhibitor 
arc coming from the place P_n2_not_found2, 
and due to the absence of a token in this place, 
meaning that the search operation has not been 
carried out on Node #2 yet. 

Given a token in the place P_n2_selected, 
the immediate transition T_n2_search_start 
fires, but only if Node #2 is idle (a token in the 
place P_n2_idle). The firing of this transition 
puts a token into the place P_n2_search_start, 
which enables the exponential transition 
T_n2_search. It fires with a rate of μSEARCH and 
puts a token into the place P_n2_search_end. 
Now two immediate transitions become 
concurrently enabled: the transition T_n2_found 
(meaning that the searched data has not been 

 
Figure 3.  GSPN model of the processing of a single READ request in a P2P replicated architecture with two nodes. 
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found within the dataset held in Node #2) and 
the transition T_n2_not_found. The first one 
fires with a probability of pFOUND, and the latter 

one with a probability of 1  pFOUND. 

If the searched data is found on Node #2, the 
reading operation starts by placing a token into 
the place P_n2_read_start, which enables the 
exponential transition T_n2_read, but only if the 
Node #2 is idle at that moment (a token in the 
place P_n2_idle). After 1/μREAD units of time, 
the exponential transition T_n2_read fires and 
puts a token into the place P_n2_read_end. 
Because there is already a token residing in the 
place P_n1_not_found2 (the reading operation 
failed on Node #1 because the searched data 
were not found), the immediate transition 
T_OR2 becomes enabled and immediately fires, 
by putting a token into the terminal place 
P_read_end. 

On the other hand, if the searched data is not 
found on Node #2 (a token in the place 
P_n2_not_found1), after it was not found also 
on Node #1 (a token in the place 
P_n1_not_found2), the immediate transition 
T_AND2 becomes enabled and fires, by taking 
out the tokens from both previously mentioned 
places and by putting a token in the terminal 
place P_not_found. Note that, given a token in 
the place P_n2_not_found1, the immediate 
transition T_search_n1 remains disabled, 
because of the existence of an inhibitor arc 
originating from the place P_n1_not_found2, 
which already contains a token (the searched 
data was not found in the dataset residing on 
Node #1). 

VI. DISCUSSION 

The GSPN sub-model related to the 
processing of the WRITE request contains a 
single starting place (P_write_start) and two 
terminal places (P_n1_replicated and 
P_n2_replicated). A token in the place 
P_n1_replicated means that the writing 
operation has been initially executed on Node #1 
and afterward the WRITE request has been also 
processed on Node #2 so that both dataset 
replicas become identical. In the same manner, a 
token in the place P_n2_replicated means that 
the writing operation has been initially executed 
on Node #2, and subsequently the WRITE 
request has been also processed by Node #1 so 
that both dataset replicas become identical. It 
should be also notified that this particular sub-
model does not include/model the operation of 

accessing the dataset before the execution of the 
writing operation, for simplicity purposes. 

The GSPN sub-model related to the 
processing of a READ request contains a single 
starting place (P_read_start) and two terminal 
places (P_read_end and P_not_found). A token 
in the place P_read_end means that the READ 
request has been successfully addressed by 
either of the two peers, regardless of which one 
of them initially processed the request. On the 
other hand, a token in the place P_not_found 
means that none of the peers contain the 
searched data to be read in their replicated 
datasets, so none of them can successfully 
address the READ request. 

The list of input parameters for both GSPN 
sub-models, as well as their meaning, is given in 
Table I. 

The verification process of the two proposed 
GSPN sub-models, which includes structural 
analysis (estimation of the state-space, 
evaluation of traps and siphons, finding out P- 
and t-invariants), has been carried out using 
TimeNET 4.5 [9], but other dedicated software 
packages, such as PIPE 2 [10] and GreatSPN 2.0 
[11] can be utilized for this purpose, as well. It 
proved that both sub-models are accurate and 
capture the intrinsic logic and behavior of the real 
P2P replicated system with two nodes. However, 
the validation process, which aims at proving the 
credibility of the sub-models, has yet to be 
performed, by comparing the results of the 
stationary and transient analysis against a real 
P2P replicated system with two nodes/peers.  

TABLE I.  INPUT PARAMETERS. 

Parameter Meaning 

λWRITE_REQUESTS WRITE requests’ arrival rate 

μWRITE WRITE requests’ processing rate 

λREAD_REQUESTS READ requests’ arrival rate 

μSEARCH 
SEARCH operation processing 
rate 

μREAD READ requests’ processing rate 

pFOUND 
Probability of finding the searched 
data during the execution of READ 
requests 

 

The next process to be conducted is a 
performance analysis (both stationary and 
transient). The stationary analysis is particularly 
important, since it results in obtaining the steady-
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state probabilities of the modeled systems, either 
analytically, or by computer simulation. 

Finally, both GSPN sub-models can be 
slightly modified and merged into a single model 
to capture the behavior of the P2P replicated 
system under simultaneous READ and WRITE 
requests. This could lead to a complex GSPN 
model in which the only common building 
elements should be the places P_n1_idle and 
P_n2_idle. 

VII. CONCLUSION 

The paper contributes towards the 
performance evaluation of Peer-to-Peer 
replicated architectures, often utilized within the 
Big Data paradigm, by presenting suitable 
GSPN-based models of the execution of the 
READ and WRITE requests. The proposed 
GSPN-based models of the two types of request 
can provide significant insights vis-à-vis the 
performance of the modeled system, by 
obtaining the following performance metrics for 
various operating scenarios: the average 
response time, the average queue lengths, the 
average number of the READ and WRITE 
requests waiting in queues to be processed by 
peers, peers’ throughput as a function of 
requests’ arrival rate, peers’ utilization, etc. 

In this particular case, there are three obvious 
limitations associated with GSPN modeling. The 
first one states that the hereby presented GSPN 
models do not allow for distinguishing among 
different types of WRITE requests (insertion, 
update, and delete operations), so if there is a 
need for their representation, each of them should 
be modeled by a distinct GSPN substructure, 
which would considerably increase the 
complexity of the overall GSPN model. Next, 
GSPNs do not allow for modeling other load 
balancing approaches, except the ‘Round Robin’ 
and the ‘Ad Hoc’ schemes. The third limitation 
refers to the fact that GSPN-based models of the 
READ and WRITE requests would become 
increasingly complex as the number of portrayed 
peers rise. The increased complexity of the 
GSPN model can incur computational 
intractability and an inability to successfully 
evaluate any performance metrics. 

Future work will be directed towards a 
performance analysis of the proposed GSPN sub-
models vis-à-vis various input parameters, i.e. 
various operating scenarios, and conveying a 
comparative analysis of the obtained results with 
those yielded by the performance analysis of 
corresponding GSPN-based sub-models 
representing the execution of the READ and 
WRITE requests within a Master/Slave 
replicated architecture. 
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