Latin American

International Conference on Natural and Applied Sciences-III Villahermosa, Tabasco, Mexico

Powered by Arizona State University

Universidad Autonoma de Guadalajara October 4-6, 2022

PROCEEDING BOOK

EDITORS Dr. Francisco Espinoza Morales Dr. Hugo Buenrostro

UNIVERSIDAD JUÁREZ AUTÓNOMA DE TABASCO

www.iksadamerica.org

LATIN AMERICAN INTERNATIONAL CONFERENCE ON NATURAL AND APPLIED SCIENCES-III

PROCEEDING BOOK

October 4-6, 2022 Villahermosa, Tabasco, Mexico

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.

Institution of Economic Development and Social Research Publications® (The Licence Number of Publicator: 2014/31220) TURKEY TR: +90 342 606 06 75 USA: +1 631 685 0 853 E mail: iksadyayinevi@gmail.com; www.iksadyayinevi.com It is responsibility of the author to abide by the publishing ethics rules IKSAD Publications – 2021© Issued: 06.12.2021

EDITORS

Dr. Francisco Espinoza Morales

Dr. Hugo Buenrostro

ISBN: 978-625-8246-27-8

CONFERENCE ID

LATIN AMERICAN INTERNATIONAL CONFERENCE ON NATURAL AND APPLIED SCIENCES-III

DATE - PLACE

October 4-6, 2022 Villahermosa, Tabasco, Mexico

İKSAD- www.iksad.org.tr PARTICIPANT ORGANIZATIONS

Universidad Autonoma de Guadalajara UAG, Universidad Abierta y a Distancia UNAD, Colombia Universidad Juárez Autónoma de Tabasco, México

Institute Of Economic Development And Social Research Violence and Abuse Studies Platform

LANGUAGES

English, Spanish, Turkish, Russian

EVALUATION PROCESS

All applications have undergone a double-blind peer review process

TOTAL NUMBER OF PAPER:66

The number of paper from Turkey: 16 Other Countries:40

PARTICIPANT COUNTRIES:

Türkiye, Mexico, Iraq, USA, Ukraine, Italy, Indonesia, Azerbaijan, Morocco, Kyrgyz Republic, Egypt, N. Macedonia, Serbia, Kosovo, Taiwan, India, Pakistan, Nigeria, Algeria, Greece, Brazil, Georgia, Vietnam, Hungary, United Arab Emirates, Uzbekistan

ORGANIZING AND SCIENTIFIC COMMITTEES

Dra. Felipa Sánchez Pérez Universidad Juárez Autónoma de Tabasco, México Chairman of the conference

Dra. Francisca Silva Hernández Universidad Juárez Autónoma de Tabasco, México

Dr. Germán Martínez Prats Universidad Juárez Autónoma de Tabasco, México

Dr. Jose Alberto Del Rivero Del Rivero Universidad Juárez Autónoma de Tabasco, México

Dr. Rafael Ricardo Renteria Ramos Universidad Abierta y a Distancia UNAD, Colombia

Dr. Ragif Huseynov Managing Director of Khazar Educational Center, Azerbaijan

Dr. Raiba Jafarova Associate Professor of Azerbaijan State Agricultural University, Azerbaijan

> **Dr. Resmiyye Abdullayeva** Associate Professor of Institute of Economics, Azerbaijan

Dr. Maral Jamalova Assistant Professor of Azerbaijan State University of Economics, Azerbaijan

Bunyamin Seyidov PhD student of Institute of Philosophy and Sociology, Azerbaijan

POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) IN SMOKED FISH AND HUMAN HEALTH RISK ASSESSMENT

Kujtim Uka

Kosovo Food and Veterinary Agency, Kosovo Food and Veterinary Laboratory, "Lidhja e Pejës" 241, Prishtina, Kosovo

Dijana Blazhekovikj - Dimovska

University "St. Kliment Ohridski", Faculty of Biotechnical Sciences, "Partizanska" b.b., Bitola, N. Macedonia, https://orcid.org/0000-0001-5912-9093

Mentor Ismaili

University "Hasan Prishtina", Faculty of Medicine, Prishtina, Kosovo

Vlora Zogejani

Kosovo Food and Veterinary Agency, Kosovo Food and Veterinary Laboratory, "Lidhja e Pejës" 241, Prishtina, Kosovo

Ariana Kadriu

Kosovo Food and Veterinary Agency, Kosovo Food and Veterinary Laboratory, "Lidhja e Pejës" 241, Prishtina, Kosovo

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are associated with risks to human health, especially carcinogenesis. One form of exposure to these compounds is through ingestion of smoked fish, which can occur during fish processing, involving high temperatures. Smoking is one of the oldest methods of fish preservation since smoke contains bactericidal and antioxidant properties. Depending on the smoking method, the amount of carcinogenic compounds in smoke varies. Several PAHs compounds represent carcinogenic, especially for smoked fish. The EU Scientific Committee on Food (SCF) has identified 15 PAHs compounds as carcinogenic genotoxic i.e. Benzo[a]anthracene, Benzo[b] fluoranthene, Benzo(j)fluoranthene, Benzo[k]fl fluoranthene, Benzo(a)pyrene, Benzo(ghi) perylene, Chrysene, Cyclopenta[cd]pyrene, Dibenz[a,h]anthracene, Dibenzo[a,e]pyrene Dibenzo[a,l]pyrene, Dibenzo[a,i]pyrene, Indeno[1,2,3-cd]pyrene, and 5-Methylchrysene. This research aimed to determine the content of polycyclic aromatic hydrocarbons (PAHs) in five species of smoked fish, namely brown trout (Salmo trutta), tuna (Thunnus albacares), mackerel (Scomber scombrus), Atlantic salmon (Salmo salar) and mullet (Mugil cephalus), obtained from markets of different countries. The levels of these compounds in smoked fish have been determined by a GC/MS technique. The content of all identified compounds, in each fish species, was below the permissible limits following European regulations for the maximum permitted amount of polycyclic aromatic hydrocarbons in smoked products.

Keywords: smoked fish, polycyclic aromatic hydrocarbons, risk assessment

Introduction

According to [1], more than 100 polycyclic aromatic hydrocarbons (PAHs) have been characterized, sixteen of which were classified as priority pollutants because of their toxicity. [2] considered that PAHs have been reported to be highly mutagenic and carcinogenic in humans. One form of exposure to these compounds is through ingestion of smoked fish, which can occur during fish processing, involving high temperatures. Several PAHs compounds represent carcinogenic, especially for smoked fish. Smoking is one of the oldest methods of fish preservation since smoke contains bactericidal and antioxidant properties. Depending on the smoking method, the amount of carcinogenic compounds in smoke varies. [3] concluded that serious public health concerns could occur if PAHs residues present in smoked fish are above-recommended levels.

MATERIALS AND METHODS

This research aimed to develop an analytical method for the determination of PAHs in samples of smoked fish. The method was proved using PAH standard Calibration MIX 1x1 ml, 10ug / ml - Acetonitrile.

Materials

Samples of five species of smoked fish obtained from markets of different countries, namely brown trout (*Salmo trutta*) from Kosovo, tuna (*Thunnus albacares*) from Italy, mackerel (*Scomber scombrus*) from Great Britain, Atlantic salmon (*Salmo salar*) from Italy and mullet (*Mugil cephalus*) from Greece, were used for this research.

Fig.1. Smoked fish samples

Extraction of PAHs was carried out based on the method described by [4]. For this purpose, the following reagent and standards were used: Acetonitrile, water deionized, magnesium sulfate, sodium chloride 400 mg, C18 400 mg, Naphthalene, Acenaphtylene, Acenaphthene, Fluorene, Anthracene, Phenanthrene, Dimethyl, Fluoranthene, Pyrenees, Benzo (a) anthracene, Chrysene, Benzo (b) fluoranthene, Benzo (k) fluoranthene, Benzo (e) pyrene, Indeno (1,2,3-cd) pyrene and Benzo (g, h, i) perylene.

Fig.2. Sample during quenchers (5982-6555) (Extraction containing 6 g magnesium sulfate and 1.5 g sodium chloride)

Fig.3. Sample during purification with quenchers (5982-5158) (contains 400 mg PSA, 400 mg C18EC, and 1200 mg MgSO₄)

Methods

Below are the equipment and methods used for this research: *General laboratory equipment*

- cups sized glass _ to MISCELLANEOUS
- tubes 50 ml
- tubes of 15 m
- Volumetric flasks with different sizes
- Balloons different size
- Measuring and testing equipment
- Electronic Scales s with weight and precision up to 0.01mg
- Centrifuge
- Mixer
- Vortex

Main devices measurement

- GCMS with MS detector
- Column per GCMS: DB-5

- GCMS - vials

Centrifuge tube 50 ml with cap.

Column chromatographic DB-23 (30 Detector spectrometer mass capable of recording and transitions of at least GC / MS and equipped with ESI interface.

- Centrifuge tube 15 ml with cap
- Glass tubes of 10 ml

Computerized system for GCMS, and chromatographic data calculation.

Chromatographic Method - Gas chromatography

The cleaned up extracts were analysed naphthalene, acenaphthylene, benzo[b]fluoranthene, phenanthrene, dibenzo[a,h]anthracene, chrysene, benzo[a]pyrene, acenaphthene, benzo[k]fluoranthene, fluorene, pyrene, benzo[a]anthracene, anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, and benzo[g,h,i] anthracene, using Gas chromatography, programmed as follows:

Column	HP-5 30mX
Injector temperature	temperature 280°C
Carrier gas	Helium
Carrier gas flow	1.2 mL / min
Split ratio	50:02:00
Oven Program	60°C. 2.8 min 1°C 20 0°C / min 150°C 0 min 12 0°C / min 300°C 11.6 min
Total run time:	29.6 min
Injection Volume	2.0 ul
Diluent	Acetonitrile
MS Parameters:	
Ionization source	EI
Electron energy	70 Ev
MS Source	230°C
MS Quad	150C
SIM or SIR (Selective Ion Monitoring)	Parameters:
Solvent delay	5.0 min

Table.1. MS - Operating conditions for testing PAHs in smoked fish meat

Samples Preparation: meat sample of smoked fish

These are the steps for sample preparation:

↓

Agilent Bond Elut QuEChERS Extraction Procedure for PAHs in Fish

Weigh a 3g sample (±0.05g) in a 50 ml centrifuge tube

Add 12ml of DI water and 2 ceramic bars to the sample

↓
Add 15ml of ACN vortex 1min
Add original Agilent Bond Elut QuEChERS extraction salt packet for 15g samples (p/n 5982-6555)
\downarrow
Shake vigorously for 1min on Geno/Grinder at 1500 pm
\downarrow
Centrifuge at 4000 rpm for 5 min.
\downarrow
Transfer 8ml of the ACN layer to Agilent AOAC fatty sample type 15ml tube (p/n 5982-5258)
\downarrow
Vortex 1min. Centrifuge at 4000 rpm for 5min
\downarrow

Analyze extract by GC/MS

The samples have been tested within 24 hours from the moment of preparation.

5. RESULTS AND Discussion

Polycyclic Aromatic Hydrocarbons (PAHs) levels in five commonly consumed smoked fish species, namely, brown trout (*Salmo trutta*) from Kosovo, tuna (*Thunnus albacares*) from Italy, mackerel (*Scomber scombrus*) from Great Britain, Atlantic salmon (*Salmo salar*) from Italy and mullet (*Mugil cephalus*) from Greece were assessed to evaluate possible human health risks associated with consumption.

Testing is performed using the analytical method of Gas chromatograph with a detector with a spectrometer of mass (GC-MS). Methods are accurate in detecting PAH - in smoked fish meat. The calibration curve ranged from 10-1000 ng/ml.

	MM	Tar	Q1	Q	R	Correla	Calibra	LO	LO
Compounds	g /	get		2	Т	tion	tion	D	Q
	mol	ion			(m	coefficie	Curve -	(ng	(ng
					in)	nt (R2)	range	/	/ml)
							(ng / ml)	ml)	
NAPHTHAL	128.	128	12	12	4.4	1	10-1000	8.0	24.5
ENE	17		9	7	5			9	
(C 10 H 8)									
ACENAPHT	152.	152	15	15	6.3	0.99	10-1000	61.	186.
HYLENE (C	2		1	3	5			54	5
12 H 8)									
ACENAPHT	154.	154	15	15	6.6	1	10-1000	24.	74.2
HENE (C 12 H	2		3	2				49	2
10)									

Table 2. PAH compounds Calibration MIX 1x1 ml, 10 ug / ml – Acetonitrile

FLUORES	166.	166	16	16	7.3	1	10-1000	31.	94.6
(C 13 H 10)	22		5	7	4			22	1
PHENANTH	178.	178	17	17	8.8	0.99	10-1000	46.	141.
RENE (C 14 H	23		9	6	7			56	08
10)									
ANTHRACE	178.	178	17	17	8.9	0.99	10-1000	50.	151.
NE	23		9	6	5			14	94
(C 14 H 10)									
FLORANTH	202.	101	20	20	11.	0.99	10-1000	53.	162.
ENE	26		2	3	02			47	03
(C 16 H 10)									
PYRENE (C 16	202.	202	20	20	11.	0.99	10-1000	53.	160.
H 10)	26		0	3	4			1	9
BENZO (A)	228.	228	22	22	13.	0.95	10-1000	107	325.
ANTHRACE	29		9	6	75			.5	9
NE									
(C 18 H 12)									
CHRYSENE	228.	228	22	22	13.	0.99	10-1000	44.	135.
(C 18 H 12)	29		6	9	82			64	28
BENZO (B)	252.	252	12	25	15.	0.97	10-1000	81.	247.
FLUORANT	31		6	3	71			59	25
HENE (C 20 H									
12)									
BENZO (K)	252.	123	25	25	15.	0.97	10-1000	80.	244.
FLUORANT	32		2	3	76			78	78
HENE (C 20 H									
12)									

	Compound s	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
1	NAPHTHALENE (C10H8)	n/d*	n/d	n/d	n/d	n/d	n/d
2	ACENAPHTHYLENE (C12H8)	n/d	n/d	n/d	n/d	n/d	n/d
3	ACENAPHTHENE (C12H10)	n/d	n/d	n/d	n/d	n/d	n/d
4	FLUORENE (C13H10)	n/d	n/d	n/d	n/d	n/d	n/d
5	PHENANTHRENE (C14H10)	n/d	n/d	n/d	n/d	n/d	n/d
6	ANTHRACENE (C14H10)	n/d	n/d	n/d	n/d	n/d	n/d
7	FLORANTHENE (C16H10)	8.36	n/d	n/d	0.38	1.07	n/d
8	PYRENE (C16H10)	7.94	n/d	0.59	0.36	1.21	n/d
9	BENZO (A) ANTHRACENE	1.61	0.16	0.38	0.3	0.18	n/d
	(C18H12)						
1	CHRYSENE (C18H12)	n/d	n/d	n/d	n/d	n/d	n/d
0							
1	BENZO (B) FLUORANTHENE	n/d	n/d	n/d	n/d	n/d	n/d
1	(C20H12)						
1	BENZO (K) FLUORANTHENE	n/d	n/d	n/d	n/d	n/d	n/d
2	(C20H12)						
1	BENZO (A) PYRENE (C20H12)	n/d	n/d	n/d	n/d	n/d	n/d
3							
1	BENZO (G, H, I) ANTHRACENE	n/d	n/d	n/d	n/d	n/d	n/d
4	(C22H12)						
1	DIBENZO (A, H) ANTHRACENE	n/d	n/d	n/d	n/d	n/d	n/d
5	(C22H14)						
1	INDENO (1, 2, 3-CD) PYRENE	n/d	n/d	n/d	n/d	n/d	n/d
<u>6</u>	(C22H12)						

Table 3. PAH compounds in smoked fish samples

*Sample 6 is the control

Compounds		Sample	Sample	Sample	Sample	Sample	Sample
		1	2	3	4	5	6
		8.36	n/d	n/d	0.38	1.07	n/d
Floranthene							
(C16H10)							
		7.94	n/d	u	0.36	1.21	n/d
Pyrene (C16H10))						
Benzo	(A)	1.61	0.16	0.38	0.3	0.18	n/d
Anthracene							
(C18H12)							
According to	the						
order	of	1	5	4	3	2	6
contamination							

Table 4. Levels of contamination with PAH compounds in smoked fish samples

*Sample 6 is the control

*1 – the highest level; 5 – the lowest level

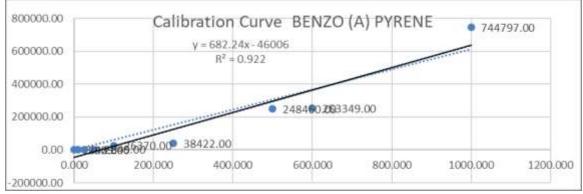


Fig. 4. Calibration curve – BENZO (A) PYRENE -10-1000ng/ml

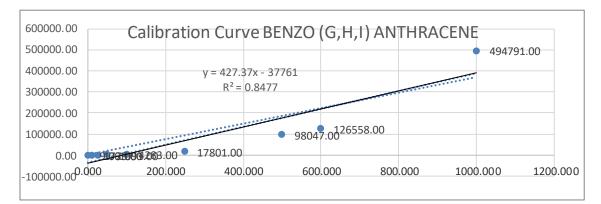
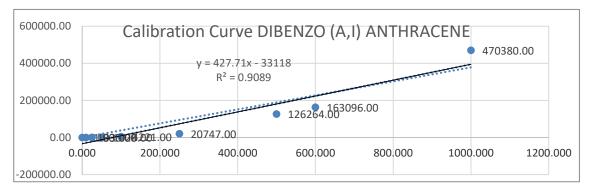



Fig. 5. Calibration curve – BENZO (G, H, I) ANTHRACENE -10-1000 ng/ml

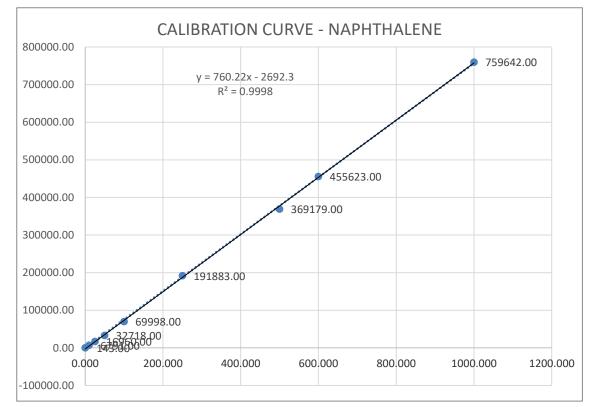


Fig. 6. Calibration curve – DIBENZO (A, I) ANTHRACENE -10-1000 ng/ml

Fig.7. Calibration Curve - Naphthalene -10-1000 ng /ml

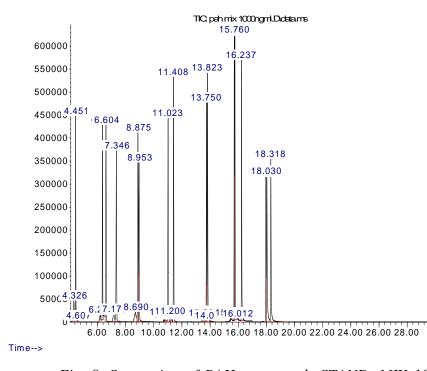


Fig. 8. Separation of PAH compounds STAND. MIX 1000ng / ml with column (SCAN) HP-5 30 m x 0.320 mm x 0.25m

Sample Name:	PAH
MIX 1000 ng / m	l
Compound	RT
Name	(min)
Naphthalene	4.451
Acenaphthylene	6.356
Acenaphthene	6.604
Fluorene	7.346
Phenanthrene	8.875
Anthracene	8.953
Floranthene	11.023
Pyrenees	11.408
Benzo (a)	13.75
Anthracene	
Chrysene	13.823
Benzo (b)	15.717
Fluoranthene	
Benzo (k)	15.76
Flioranthene	
Benzo (a)	16.237
Pyrenees	
Benzo (g, h, i)	17.96
Anthracene	
Dibenzo (a, i)	18.03
Anthracene	
Indeno (1,2,3-	18.318
cd) Pyrenees	

Abundance

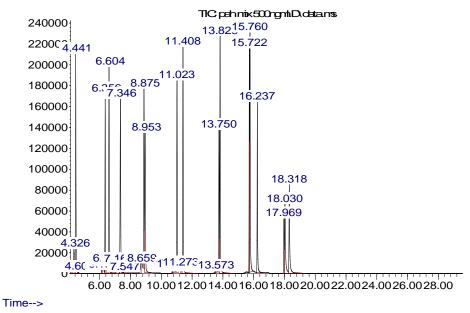


Fig. 9. Separation of PAH compounds STAND. MIX 1000ng / ml with column HP-5 30 m X - (SIM)

CONCLUSIONS

The major source of contamination by PAHs are processing procedures, such as smoking, drying, and cooking of food. PAHs compounds are formed in the smoked food, depending on a variety of parameters, such as time of exposure, type of wood, distance from the heat source and fat drainage, way of cooking (smoking, grilling, frying, roasting), etc. The impact of PAHs on human health depends mainly on the length and route of exposure, the amount or concentration of PAHs one is exposed to, as well as the relative toxicity of the PAHs. Pre-existing health status and age, as subjective factors can also affect human health. In our research, the content of all identified compounds, in each fish species, was below the permissible limits following European regulations for the maximum permitted amount of polycyclic aromatic hydrocarbons in smoked products.

REFERENCES

[1]. US Environmental Protection Agency (USEPA), Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. EPA/600/R-93/089, U.S. Environmental Protection Agency. Washington, DC: Office of Research and Development, 1993.

[2]. P. Simko, "Determination of polycyclic aromatic hydrocarbons in smoked meat products and smoke flavoring food additives, J. Chromatogr. B, 2002, vol. 770 (1–2), pp. 3–18.

[3]. B. Muyela, A. Shhitandi and R. Ngure R., "Determination of benzo[a]pyrene in smoked and oil fried *Lates niloticus*, Int. Food Res. J. 2012, vol. 19 (4), pp. 1595–1600.

[4]. T. Pena, L. Pensado, C. Casais, C. Mejuto, R. Phan-Tan-Luu, and R. Cela, "Optimization of a microwave-assisted extraction method for the analysis of polycyclic aromatic hydrocarbons from fish samples". J. Chromatogr. 2006, vol. 1121, pp. 163–169.