

LIFE INSURANCE DEMAND AND BORROWING CONSTRAINTS

AUTHORS:

B. Srbinoski, K. Poposki, P. H. Born and V. Lazzari

PRESENTER:

BOJAN SRBINOSKI | UNIVERSITA' CARLO CATTANEO | bsrbinoski@liuc.it

- The literature agrees that financial development supports life insurance development:
 - Supply-driven explanations
 - Too aggregate proxies
- However, financial development affects saving rate through relaxation of borrowing constraints
- Relaxation of borrowing constraints reduces the households' needs to save
- The access to credit for firms is less restricted to the one for households
- The life insurance is not only risk hedging instrument, but also saving/investment instrument (88% of global life premium written belongs to traditional life savings products (Swiss Re, 2019))

■ Purpose: to investigate empirically whether the differences in life insurance consumption are attributed to the different levels of borrowing constraints across countries

Contributions:

- first empirical study testing the relationship between borrowing constraints and life insurance demand
- demand-driven explanation between financial development and life insurance development
- implications on four other venues (life insurance and interest rates, lapse, policy loans demand, savings under liquidity constraints)
- to policymakers: the expansion of credit limits the savings through life insurance
- to life insurers: the evolvement of credit markets may affect lapse rates

Background: Borrowing Constraints and Savings

- Theoretical reasoning of Jappelli and Pagano (1994):
 - Constrained case: the young generation is assumed to be constrained to borrow the desired amount to finance current consumption
 - Unconstrained case: the young generation finances their consumption up to their discounted lifetime income and, when middle-aged, repays the loan and save for retirement
 - The constrained economy: higher savings for young and middle-aged generation → higher aggregate net wealth → higher capital level stock → higher steady-state growth and saving rate in the next period

- Why would borrowing constrained household hold life insurance?
 - Embedded options (surrender and policy loans) make life insurance relatively liquid saving instrument (88% of whole life policies lapsed)
 - Policyholders lapse when liquidity shock occurs (precautionary motive)
 - Policy loans used for current consumption
 - Constrained households have higher future net wealth (due to less borrowings) comparing to the unconstrained ones and better position to save for retirement by purchasing life annuities
- H1: Borrowing constraints positively affect life insurance demand

Data and Methodology

Basic Model (Beck and Webb, 2003)	LIP = f(income, dependency, mortality, inflation, risk aversion, borrowing constraints)				
Dependent variable	Life insurance premiums as a % of GDP (Swiss Re)				
Sample (4-year averages)	Annual data – 55 countries – (2000-2016)	Annual data – 42 countries – (1980 – 2017)			
Borrowing constraints proxies	Average LTV ratio (Alam et al., 2019)	Household credit to GDP ratio (Bank for International Settlements)			
Econometric techniques	Fixed and random effects panel data regressions	Dynamic generalized method of moments two step estimator as suggested in Roodman (2009)			

Key Results FE/RE Panel Data (1/2)

Model	Basic	Basic + FDI	Basic + Non- household credit	Basic + Financial market	Basic + Urbanization	Basic + Female labor participation	Basic + Social security	Basic + Interest rate	Basic + rule of law
LTV ratio	-0.016**	-0.015**	-0.017**	-0.016**	-0.014**	-0.017**	-0.010	-0.012	-0.018***
t-statistic	(-2.363)	(-2.196)	(-2.004)	(-2.350)	(-2.152)	(-2.421)	(-1.518)	(-1.491)	(-2.677)
Observations	257	257	195	257	257	254	189	162	257
Number of economies	55	55	42	55	55	55	41	44	55
Estimation method	FE	FE	RE	FE	RE	FE	FE	FE	FE
Wald test (p-value)			0		0.0146				
F-test (p- value)	0.0206	0.0141		0.0358		0.0213	0.0919	0.0015	0.0101

Notes: FE – fixed effects; RE – random effects; t-statistics (FE) and z-statistics (RE) in brackets; *** p<0.01, ** p<0.05, * p<0.1

Key Results GMM Two Step Estimator (2/2)

Model	Basic + LIP lag	Basic + LIP lag + FDI	Basic + LIP lag + Non- household credit	Basic + LIP lag + Financial market	Basic + LIP lag + Urbanization	Basic + LIP lag + Female labor participation	Basic + LIP lag + Social security	Basic + LIP lag + Interest rate	Basic + LIP lag + rule of law
Household credit to GDP	-0.013*	-0.015*	-0.013*	-0.017*	-0.016**	-0.016*	-0.012	-0.015*	-0.009
t-statistic	(-1.898)	(-1.723)	(-1.990)	(-1.942)	(-2.223)	(-2.001)	(-0.705)	(-1.803)	(-0.976)
Observations	258	258	258	258	258	256	180	176	189
Number of economies	42	42	42	42	42	42	29	35	42
AR(1) p- value	0.029	0.026	0.034	0.032	0.034	0.033	0.152	0.361	0.04
AR(2) p- value	0.015	0.018	0.018	0.017	0.015	0.016	0.009	0.038	0.056
AR(3) p-value	0.579	0.567	0.566	0.567	0.509	0.572	0.993	0.254	0.708
Sargan test (p-value)	0.160	0.0870	0.146	0.131	0.243	0.219	0.0894	0.0489	0.0200

Notes: t-statistics in brackets computed with corrected standard errors according to Windmeijer (2005); time dummies included; *** p<0.01,

^{**} p<0.05, * p<0.1

Conclusions and Implications

- Alternative demand-driven channel (borrowing constraints) through which financial development affects life insurance development
- Insignificance of interest rates precautionary savings
- Interest rate hypothesis in the lapse literature arbitrage or tight credit?
- Support for the alternative funds hypothesis in the policy loans literature
- Liquidity constraints are still binding
- Evidence that the predominance of banking sector may curb life insurance demand
- Life insurance as a financing tool for constrained households

Contact

Bojan Srbinoski School of Economics and Management Università Cattaneo—LIUC, Castellanza, Italy

e-mail: bsrbinoski@liuc.it

Klime Poposki

Department of Insurance

University St. Kliment Ohridski, Bitola, North Macedonia

e-mail: klime.poposki@uklo.edu.mk

LIUC

Università

Cattaneo

Patricia H. Born

Department of Risk Management/Insurance, Real Estate and Legal Studies Florida State University, Tallahassee, Florida, USA

e-mail: pborn@business.fsu.edu

Valter Lazzari

School of Economics and Management

Università Cattaneo—LIUC, Castellanza, Italy

e-mail: vlazzari@liuc.it

