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Abstract – In this paper, a model for hourly electricity load 

forecasting for the Republic of North Macedonia has been 

presented using deep learning. A soft attention-based LSTM 

network was trained on the period 2016-2020 and later validated 

through the usage of the consumption for 2021. It uses 

meteorological as well as temporal inputs and delivered a MAPE 

value of 4.93%. Feature importance analysis revealed that day 

type and temperature had the highest impact on prediction. The 

model is very accurate, with more deviations observed at national 

holidays and during changes of seasons. 
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I. INTRODUCTION 

The increasing complexity of modern energy systems has 

brought forth the necessity of advanced forecasting models that 

can accurately predict electricity demand. Accurate load 

forecasting enables energy suppliers to balance supply and 

demand, optimize operational efficiency, and minimize 

economic losses. Traditional statistical approaches, while 

sufficient in steady systems, do not capture the dynamic and 

nonlinear characteristics of modern patterns of power 

consumption, particularly during periods of instability such as 

global health pandemics or holiday-induced shifts in 

consumerism. 

In the last couple of years, deep learning methods have 

gained a huge pace in time series prediction due to the fact that 

they are able to learn hierarchical data patterns automatically. 

Among them, Long Short-Term Memory (LSTM) networks, 

being a type of recurrent neural network (RNN), have emerged 

as highly promising in sequential relations and long-range 

temporal patterns. Their architecture enables the network to 

recall information from long input sequences, and thus they are 

most appropriate for hourly energy consumption data [1]. 

In this study, an LSTM-hybrid model with a soft attention 

mechanism is proposed to forecast hourly electricity demand in 

the Republic of North Macedonia for 2021. The model is 

trained on a five-year historical dataset (2016–2020) with both 

temporal and contextual features. The attention mechanism is 

employed to enhance the interpretability of the model by 

dynamically focusing on significant time steps, thereby 

improving overall performance. 

Moreover, a gradients-based feature importance analysis was 

incorporated to evaluate the contribution of each input variable. 

The results indicated that temperature, whether it was a 

workday or non-workday, and off-peak tariff times were among 

the most determining factors of energy demand, while seasonal 

indicators and the pandemic variable had a lesser effect [2][3]. 

The last model generated a mean absolute percentage error 

(MAPE) of 4.93%, showing excellent predictive accuracy. 

Detailed examination of cases with higher forecasting 

deviation, like religious holidays and heatwaves, revealed clear 

patterns of behavior not always present in training data, 

offering valuable insight into model shortcomings and areas for 

future improvement. 

The paper is organized as follows. After Introduction, the 

training and testing dataset for the model and data preparation 

techniques are presented in Section II. Section III presents the 

methodology, including the LSTM network structure with the 

attention mechanism and training procedure. Section IV gives 

the results and in-depth discussion on the performance of the 

model and impact of the significant features. Section V 

concludes the study and recommends future studies. 
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Fig. 1. Graphical breakdown of temperature profiles, seasonal load, 

and impact by tariff (for the years 2016–2020 
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II. DATA DESCRIPTION 

The analysis is based on a comprehensive dataset of hourly 

electricity consumption in the Republic of North Macedonia, 

covering the five-year period from 2016 to 2020 [4][5]. 

Historical data for 2016-2020 is used for training and only the 

year 2021 is used for testing and validation alone. Each 

observation in the data has not only the actual energy 

consumption but also some exogenous variables that are known 

or predictable in advance and are therefore suitable for 

forecasting. 

One of the characteristics included is the ambient 

temperature, a key driver of consumption, especially in times 

of extreme weather [2][6]. The data also includes a flag for 

whether the day is a working or non-working day, season 

classification, and a binary flag for pandemic conditions, which 

is particularly relevant to the year 2020 due to the COVID-19 

pandemic [7]. The CE (Cheap Energy) feature also captures 

low-tariff periods, which tend to coincide with normal patterns 

of consumer behavior and therefore are highly predictive. A 

time-feature transformation was applied by encoding the hour 

of day using sine and cosine transformations in an effort to 

better represent the cyclical patterns of electricity usage. The 

input numbers were all scaled by a Min-Max scaler to rescale 

values into the [0, 1] range in order to enable the model to train 

better [1]. 

The evolution and variability of these characteristics during 

the five-year period are visible in Figure 1, a graphical 

breakdown of temperature profiles, seasonal load, and impact 

by tariff. The average hourly usage per year of the training set 

is shown in Figure 2, demonstrating cyclic diurnal and seasonal 

patterns.  

III. METHODOLOGY 

The core of the predictive framework used here is a Long 

Short-Term Memory (LSTM) neural network [8], a specialized 

type of Recurrent Neural Network (RNN) [8][9] renowned for 

its ability to learn long-term dependencies in sequences. The 

LSTM architecture is well suited to learning temporal data such 

as electricity consumption, where current values are highly 

dependent on previous time instances. The model learned to 

forecast electrical demand hourly in the year 2021 based on 

patterns learned from historical data from 2016 to 2020. 

A soft attention mechanism was also added in order to further 

enhance model performance and interpretability. This layer 

imposes adaptive weights over the LSTM's hidden states across 

all time steps, effectively allowing the model to "attend" to the 

most salient inputs in the sequence. This attention mechanism 

augmented the model's ability to detect and order relevant 

patterns, particularly under volatile consumption periods [10]. 

A schematic diagram of the whole architecture, including the 

attention module, is depicted in Figure 3. 

The network architecture consists of an input layer and two 

LSTM layers with 128 and 64 hidden units, respectively. After 

the use of the attention mechanism, the dense fully connected 

layer with the ReLU activation is used and then a dropout layer 

to prevent overfitting [11][12]. Finally, a single-node output 

layer generates the predicted value of consumption. The model 

is compiled using the Mean Squared Error (MSE) loss function 

and Adam optimizer for optimizing. The Adam algorithm was 

chosen due to its adaptive learning rate properties and strong 

performance on time series forecasting tasks. In addition, a 

learning rate scheduler with exponential decay was used to 

reduce the learning rate slowly during training and improve 

convergence stability [12]. 

There was training for over 100 epochs with a batch size of 

32 and a validation split of 20% to monitor the generalization 

capability of the model. Input data preparation was done using 

a sliding window technique, where every input sequence had 

48 time steps (two days) to forecast the next hour's 

consumption. This time window was chosen after experimental 

testing to strike a balance between model complexity and 

forecasting accuracy [13]. 

For comparing the contribution value made by all input 

features after training, the Integrated Gradients (IG) approach 

was adopted. IG belongs to the group of gradient-based 

attribution methods where each feature is weighted by 

cumulating the gradients along a line path from the baseline 

input towards actual input. The results of the feature 

importance analysis are shown in Figure 4, where workday 

classification, CE (cheap energy) periods, and temperature 

 

Fig. 2. Average hourly usage per year of the training set (2016–

2020), showing diurnal and seasonal patterns.   

 

Fig. 3. Model architecture schematic, including the attention 

mechanism.   
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were the major contributing factors to the prediction. These 

findings are then cross-checked against actual observed 

anomalies in consumption, further reinforcing the explanatory 

power of the selected features. 

IV. RESULTS AND DISCUSSION 

The model was cross-validated on unseen data for the year 

2021 using Mean Absolute Percentage Error (MAPE) as the 

performance metric [14]. The model's last MAPE was 4.93%, 

which reflects extremely high precision and reliability in 

forecasting electricity demand for an entire calendar year. Such 

accuracy is extremely competitive, particularly because of 

seasonality and fluctuation in power usage in North Macedonia. 

A study from North Macedonia on day-ahead electricity load 

forecasting using ARIMA-based models found that a basic 

ARIMA model achieved a Mean Absolute Percentage Error 

(MAPE) of around 5%, while incorporating temperature as an 

exogenous input in a SARIMAX model reduced the error to 

approximately 3.6%  [15]. These error rates are in the same 

range as the LSTM with attention (MAPE 4.93%), suggesting 

comparable accuracy between the classical statistical approach 

and the deep learning method within this regional context. 

MAPE is an appropriate measure of load forecasting since it 

expresses error in prediction as a percentage of the actual 

demand, thus making the practitioner comprehend the accuracy 

with ease. It is scale-invariant – a 5% error is the same 

regardless of whether maximum demand is 500 MW or 1500 

MW and standard practice to compare forecasting models in 

power systems [10]. By expressing errors in terms of 

percentage, MAPE allows easy comparison of model accuracy 

across different load levels (e.g., an MAPE of 4.93% means the 

model forecasts are ~4.93% different on average from actual). 

This makes MAPE a sound means of assessing accuracy of 

electricity demand forecasts in this research. 

A feature importance analysis using the Integrated Gradients 

method ranked temperature as the most influential, followed by 

workday classification and tariff-related attributes. Pandemic 

and seasonality, while in the model, had zero contributions 

towards its predictive capacity. These findings are further 

illustrated through graphical analyses in Figure 5 and Figure 6 

which show the relationship between actual and predicted 

consumption and the impact of prominent features. 

Figure 5 is a comparative plot of predicted and actual hourly 

consumption throughout the year. While the model captures the 

overall trends and seasonal behavior, there are some phases 

with considerable deviations. A closer look, as presented in 

Figure 6, indicates that the largest prediction errors happen on 

specific dates in January, May, and July. 

The most heavily weighted top ten highest average error 

predictive days were calculated which included January 3rd, 

4th, and 7th, May 2nd–4th, and July 15th–18th. These are 

significant national and religious public holidays such as 

Christmas and Easter, and Eid al-Adha, when usual 

consumption patterns significantly diverge from previous 

patterns due to social festivities, mobility, and alterations in 

daily habits [16].  

To determine the cause of the consumption anomalies, the 

temperature record of the five years from 2016 to 2020 was 

compared with that of 2021. The comparison revealed that the 

temperatures on the anomalous days in July 2021 were slightly 

above the five-year average. These elevated temperatures, 

coupled with social dynamics in the post-pandemic period—

e.g., increased mobility of the population and reverse 

migration—were likely to be the cause of the unexpected 

increase in electricity demand [16]. These factors may not have 

been properly captured by the model, thus leading to deviations 

between expected and actual values. 

 

Fig. 4. Feature importance analysis using Integrated Gradients – bar 

chart showing importance of each feature.   

 
 

Fig. 6. Zoomed-in comparison of actual vs predicted values during 

periods with largest deviation (January, May, July). 

 

Fig. 5. Full-year 2021 comparison between actual and predicted 

consumption.   
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The use of an attention mechanism built into the LSTM 

model played a key role in strengthening the prediction for most 

of the year. Nevertheless, attention weights did fall off in the 

case of sudden holiday-related changes, suggesting that 

additional fine-tuning in the identification of such contextual 

variables may be required.  

In addition, the Integrated Gradients-based feature 

importance analysis uncovered that the most influential 

features in model decision-making were Temperature, CE 

hours (low-cost energy hours), and Day Type (Work/Non-

work). Of note, pandemic status and seasonal category were 

comparatively less impactful, indicating that real-world 

environmental input along with overt temporal structure (hour 

of day and day classification) provides more predictiveness. 

Monthly error analysis presented in Figure 7 confirmed that 

the model performed best for months with solid and stable 

consumption patterns such as April and October and that more 

variances were observed in January, May, and July. This 

indicates the suitability of the application of behavioral and 

event-driven information in future models to continue 

minimizing prediction error for outlier months. 

V. CONCLUSION 

In this paper, an attention-based LSTM hybrid model was 

proposed and applied to predict hourly electricity demand in 

the Republic of North Macedonia in 2021. The model was fitted 

on five years of data from 2016 to 2020 based on a suitably 

selected feature set including temperature, type of day, season 

dummies, pandemic effect, and price time (CE hours). MAPE 

was used to measure the performance of the model, and its final 

value came out to be 4.93%, a very high prediction accuracy. 

The careful analysis of prediction errors revealed the largest 

errors were during periods linked with national holidays and 

religious celebrations, and during heatwaves and season 

changes. This illustrates the issue of detecting erratic patterns 

in activity and bringing in additional context such as holiday 

calendars and social events into future modeling. 

The incorporation of an attention mechanism improved the 

attention of the model to the most important temporal features, 

and analysis of feature importance confirmed the dominance of 

temperature and time-based measures in consumption patterns. 

Performance aside, the research further illustrates that greater 

gains can still be obtained through better temporal context 

modeling, especially during periods of socio-cultural 

importance. 

Overall, the proposed LSTM-based system was a legitimate 

and comprehensible energy demand forecasting model. The 

model will, in future research, be enhanced and generalized 

further by incorporating additional external data sources such 

as calendar-dependent public activities, mobility routines, and 

home behavioral factors to tackle heterogeneous consumption 

scenarios. 
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Fig. 7. Monthly error analysis – MAPE per month bar chart.   


