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Abstract:
The trajectory of technological evolution is increasingly oriented towards the development of 
intelligent solutions that enhance both the efficiency and functionality of everyday life. As 
technological advancements accelerate, we are witnessing a paradigm shift in the execution of 
technical processes, aimed at simplifying device interactions while simultaneously enhancing 
control and automation. The rise of AI at the edge is revolutionizing the way we approach 
machine learning in the context of IoT and embedded systems. Edge AI, which brings the 
power of machine learning to edge devices, allows for real-time data processing and decision-
making, enabling devices to operate independently of cloud-based systems. This innovation is 
crucial for applications requiring low-latency responses, such as autonomous vehicles, smart 
cities, and industrial automation. The convergence of AI, IoT, and edge computing is thus 
driving significant innovation in embedded systems, with trends indicating a growing emphasis 
on lightweight machine learning models, energy-efficient algorithms, and scalable 
architectures. In this paper, we will conduct an in-depth exploration of the utilization of 
TinyML systems, focusing particularly on practical case studies and best practices associated 
with neuton.ai. By examining practical use cases of neuton.ai, we will highlight its 
contributions to advancing the field, including innovations in model optimization, scalability, 
and real-world deployment strategies.
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1. Introduction

The evolution of the Internet of Things (IoT) can be framed as an integral part of the successive 
industrial revolutions that have transformed societies and economies. Each phase of industrial
development has seen the introduction of new technologies that enhance productivity, efficiency, and 
connectivity [1],[2]. IoT, as we know it today, can be understood as a product of the Fourth Industrial 
Revolution, but its foundational concepts trace back to earlier transformations in industrial history
Figure 1. Each revolution brought about a new paradigm of connectivity and automation, and IoT 
represents the latest stage in this trajectory. By integrating data, devices, and systems, IoT is not only 
enhancing industrial processes but also transforming how humans interact with the world around them. 
The convergence of IoT and AI is driving a new wave of industrial and societal transformations, 
enhancing system capabilities and human-machine collaboration. [3].

Figure 1: The four industrial revolutions and current progress



The integration of machine learning into resource-constrained devices has led to the emergence of 
TinyML, a field dedicated to enabling intelligent data processing and decision-making at the edge. As 
the Internet of Things (IoT) continues to expand, the demand for efficient, low-latency, and energy-
conscious AI solutions has become critical. TinyML addresses these demands by allowing machine 
learning models to operate on small, embedded devices with minimal computational power, reducing 
the need for continuous cloud connectivity and optimizing real-time performance [4].

One of the leading innovations in this domain is neuton.ai, which provides tools and frameworks for 
developing highly efficient TinyML models without the complexity of traditional machine learning 
pipelines [5],[6]. By automating model generation and optimizing performance for edge devices, 
neuton.ai has demonstrated practical applications across various industries, including healthcare, 
agriculture, and industrial automation. These advancements allow for real-time data analysis and 
decision-making directly on the device, minimizing latency, bandwidth usage, and energy consumption.

This paper explores the practical utilization of TinyML systems, with a specific focus on neuton.ai's 
capabilities [7]. It aims to provide a detailed analysis of current trends, challenges, and best practices 
for deploying TinyML in embedded systems, addressing the implications for both technological 
innovation and real-world applications.

2. Technological Trends and Innovations 

Technological trends and innovations in TinyML are driving significant advancements in the fields 
of IoT and edge computing. One major trend is the development of increasingly efficient hardware, 
such as low-power microcontrollers and specialized AI accelerators, which enable real-time data 
processing directly on edge devices. Model optimization techniques, including quantization and 
pruning, have also emerged as key innovations, allowing machine learning models to operate with 
minimal computational and energy requirements. Platforms like neuton.ai are advancing the automation 
of TinyML model creation, enabling the deployment of highly optimized models on resource-
constrained devices without requiring deep expertise in machine learning Figure.2.

Figure 2: Neuton.AI high architecture process overview [8] 

Moreover, innovations in lightweight neural architectures and energy-efficient algorithms are 
addressing the challenges of deploying AI on embedded systems [9]. These trends are expanding the 
applicability of TinyML across diverse sectors, from healthcare and smart cities to industrial 
automation, by enabling real-time, decentralized decision-making. The convergence of these 
innovations is shaping the future of AI at the edge, allowing for more scalable, secure, and intelligent 
IoT ecosystems.

2.1. IoT and AI integration for embedded systems 

A key development is the advancement of energy-efficient hardware, such as microcontrollers and 
edge processors, designed specifically to handle machine learning tasks directly on devices with limited 
computational resources. This evolution is critical for real-time, decentralized data processing, reducing 
reliance on cloud-based infrastructures and lowering latency. In parallel, model optimization techniques 
like quantization, pruning and neural architecture search have enabled the deployment of complex AI 
algorithms on constrained devices. Platforms such as neuton.ai are playing a pivotal role in automating 
the creation and deployment of highly efficient TinyML models, allowing embedded systems to execute 
advanced AI tasks without requiring extensive expertise or large computational overhead [10],[11].



The integration of AI and IoT in embedded systems has led to innovations in autonomous decision-
making, particularly in industries such as healthcare, agriculture, and industrial automation. The ability 
to process data locally enables enhanced privacy, reduced bandwidth usage, and faster response times, 
making these systems highly adaptive for real-world applications Figure 3. As these trends continue, 
the convergence of IoT, AI, and TinyML is shaping the future of intelligent, low-power embedded 
systems, offering scalable and efficient solutions for next-generation smart environments [12].

Figure 3: IoT device engineering 

3. Tiny Machine Learning 

TinyML is rapidly advancing field within machine learning, specifically focused on enabling AI 
capabilities in resource-constrained embedded systems. It represents a transformative approach to 
deploying machine learning models on low-power, memory-limited devices such as microcontrollers, 
which are integral to the Internet of Things (IoT) ecosystem. This development allows real-time, on-
device data processing and decision-making, reducing the need for constant cloud connectivity, and 
improving both efficiency and privacy. TinyML has wide-ranging applications across industries, 
including healthcare, smart cities, agriculture, and industrial automation [13],[14].

The growing adoption of TinyML underscores its potential to reshape the landscape of AI and 
embedded systems, offering scalable, energy-efficient solutions for real-time, intelligent decision-
making across a wide range of applications.

4. Neuton.AI and its Features

Neuton AI is a cutting-edge platform that simplifies the development and deployment of machine 
learning models. Neuton AI leverages an automated machine learning approach, allowing users to 
create highly efficient models without requiring deep technical expertise in machine learning or data 
science. The platform is designed to address the challenges of deploying machine learning on resource-
constrained devices, such as microcontrollers and embedded systems, by optimizing models for low 
memory usage, reduced computational power, and energy efficiency. With utilization of this platform, 
easily can be solved regression, classification and anomaly detection [7],[8].

It is commonly used in scientific and engineering fields for integrating machine learning into edge 
and embedded systems. The list of its diverse capabilities includes:

No-code model development - a key feature of neuton.ai is its no-code environment, which 
allows users to develop machine learning models without the need for programming. This feature 
broadens access to AI development, making it more accessible to non-technical users and a wider 
audience.

Lightweight models - neuton.ai specializes in creating ultra-compact models optimized for 
deployment on devices with minimal computational resources, such as microcontrollers and edge 
devices. These models are designed for efficient memory usage and energy consumption, making 
them well-suited for TinyML applications.

Low latency and real-time processing - the platform emphasizes the development of models 
optimized for real-time execution, supporting low-latency decision-making on edge devices. This 
capability is essential for applications requiring immediate responses, including autonomous 
systems, healthcare monitoring, and predictive maintenance.



Data privacy and security - by facilitating local data processing on devices rather than relying 
on cloud servers, neuton.ai enhances data privacy and security. This approach minimizes the 
transmission of sensitive information, addressing privacy concerns in fields such as healthcare and 
finance.

Cross-platform compatibility - neuton.ai is designed for seamless integration across diverse 
hardware platforms and environments. Its models are deployable on a range of devices, from 
microcontrollers to more advanced embedded systems, ensuring flexible deployment options.

Energy efficiency - its models are optimized for minimal energy consumption, which is crucial 
for battery-powered IoT devices and embedded systems. This efficiency extends the operational life 
of devices, reducing the need for frequent recharging or battery replacements.

Scalability - supports scalable deployment of models across multiple devices and 
environments, making it ideal for large-scale IoT deployments where numerous devices require 
simultaneous data processing.

5. Utilization of Neuton.AI 

The practical example of training the model we have created using data for Transport Type Detection
as a source data. Next phase was training the pipeline where the model type was Multi Classification
(used to predict one value of the limited number or of possible outcomes). Focus was placed on 
maximizing accuracy as the evaluation metric, with a training duration limited to 4 hours. The model 
was optimized for deployment on Intelligent Sensor Processing Units (ISPU).

Figure 4: Heatmap of the features with highest binary correlation with target 
 
After the phase of training the pipeline, next stage is results reviewing. Exploratory data analysis 

shown that for training we used data set dimensions with rows: 6210, columns:101, size 
memory:2.44mb. The data set based on the variables was split into 8 classes, above on the Figure 4 is 
shown the correlation heatmap (value 1 is indicating perfect correlation of each feature with itself, 0
indicates no correlation and -1 would indicate a perfect negative correlation, but this dataset shows only 
positive correlations). The top five pairs of features that exhibit high mutual correlation values 
exceeding 0.7, Figure 5.

Figure 5: Columns with high mutual correlation (>0.7) TOP 5 



Based on the metric type for the target hardware ISPU, there is an option to select if we want to 
use the holdout metrics or training metrics (more to read about the difference in Table1).

Table 1:
Key differences between Training and Holdout Metrics

Feature Training Metrics Holdout Metrics

Data Used Training dataset Holdout(validation/test)dataset
Purpose Evaluate model learning Access generalization ability
Implications
Common metrics

Can indicate overfitting
Accuracy, loss, precision, recall

Reflect real-world performance
Accuracy, loss, precision, recall

Both training and holdout metrics are essential for building and validating machine learning models. 
Training metrics assess how well the model has learned from the training data, while holdout metrics 
evaluate the model's performance on unseen data, providing a clearer picture of its potential 
effectiveness in real-world applications.

In our case, with utilization of neuton.ai platform the monitoring of the holdout metrics performance 
for the model show 0.95% of accuracy and good performance in the FLASH and SRAM (Static Random 
Access Memory) memory, Figure 6.

Figure 6: Performance holdout metrics accuracy 

If we focused even more on the model quality, based on the Figure 7 easy we can detect the stable 
version of the model.

Figure 7: Analytics of the model 

Classification tasks only can be represented in confusion matrix Figure 8, that shows the number 
of correct and incorrect predictions based on the validation data.



Figure 8: Confusion Matrix 

After completing the training, C libraries will be prepared for a wider range of hardware types, and 
source code will be available for enterprise plans. With downloading the of the selected 
model that can integrated it on the device Figure 9.

The contains the following files (which is not recommended to be modified, since 
unsupervised changing of files can cause errors in model inference):

Artifacts contains models converted to various formats, as well as an executable file for 
predictions on the desktop.

Neuton supported libraries for embedding, Cortex M0, Cortex M4, Cortex M33 and STMicro 
ISPU.

Neuton-generated contains information necessary for the correct operation of libraries.
LICENSE contains the possibilities and restrictions on the use of its intellectual property.
README contains instructions for leveraging libraries.

Figure 9: C Library folder structure 

6. Future Directions and Limitation 

Neuton.AI is increasingly recognized as a leading platform in TinyML and edge computing, 
prompting the exploration of several emerging future directions. Several future directions are emerging:

The platform is poised to significantly enhance AI integration at the edge with the expanding 
IoT landscape. By supporting a wider range of edge hardware, such as microcontrollers and low-
power devices, its application in areas like smart cities, autonomous vehicles and healthcare 
wearables can deepen human-machine collaboration and advance edge computing.

Enhancing real-time data processing capabilities is crucial for meeting the growing demands 
of low-latency applications, such as autonomous drones and smart medical devices. Optimizing 
inference speed and reducing latency will be essential for advancing autonomous systems and 
supporting mission-critical industries.

On-device adaptive learning, where models evolve from real-time data without cloud 
retraining, represents a key area of advancement in edge AI.



It could expand its utility by developing domain-specific models tailored to fields like 
genomics, personalized medicine, and environmental monitoring. This would involve creating 
customized solutions for handling specialized datasets and optimizing algorithms for specific 
industry applications [15].

Despite its considerable potential, Neuton.AI encounters several limitations that require attention 
and resolution [16]:

Limited customization for advanced users - it effectively automates model development for 
users with limited technical expertise. However, this focus on simplicity may restrict flexibility for 
experienced machine learning practitioners. Users seeking greater customization or the ability to 
fine-tune complex models for specific applications may find Neuton.AI automated approach 
insufficient for their advanced needs.

Challenges with ultra-low-power devices - even highly optimized models may underperform, 
limiting their applicability in certain edge computing scenarios.

Non-Sensor-based data - its versatility may be constrained when applied to computationally 
intensive tasks, such as natural language processing (NLP) or computer vision, which often 
necessitate larger models and greater processing power than typical edge devices can support.

Scalability in large-scale edge networks - scaling across numerous edge devices introduces 
significant operational challenges, including model update management, device synchronization, 
and addressing specific hardware limitations. Although Neuton.AI performs effectively in smaller 
deployments, larger-scale edge AI networks may necessitate more robust infrastructure for efficient 
model deployment and maintenance.

7. Real-World Application 

Today this platform is used wide world for different applications such as: predictive maintenance in 
industrial IoT (to monitor equipment sensors to detect unusual patterns or vibrations that indicate 
potential failures to reduce downtime and operational costs in industries), health monitoring devices
(process physiological data like heart rate, oxygen levels or ECG patterns directly on the device without 
needing a cloud connection), smart agriculture sensors (detect soil moisture, temperature and crop 
health status), environmental monitoring (air quality), smart home and building automation (adjust 
lighting) and etc. Neuton.AI is adaptable
cloud-independent approach makes it ideal for real-time, cost-effective AI solutions.

8. Conclusions 

Neuton.AI presents significant advantages in enabling AI at the edge, especially through its 
automation and TinyML capabilities, its future success will depend on overcoming current limitations 
related to customization, hardware constraints, data security and scalability. As it continues to evolve, 
addressing these challenges will be essential to broadening its applicability and pushing the boundaries 
of edge AI. In our paper, we have provided a comprehensive overview of Neuton.AI's capabilities, 
demonstrating its platform features and evaluating its current strengths. Additionally, we identified 
future directions and potential innovations, particularly in embedding AI within IoT devices in more 
efficient and intelligent ways. These advancements promise to unlock new possibilities for real-time 
data processing and autonomous decision-making at the edge, further enhancing the integration of AI 
in smart technologies and paving the way for its expanded adoption across diverse industries.
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