
International Conference on Applied Internet and
Information Technologies, 2018

DOI:10.20544/AIIT2018.P15

Designing Intelligent Tutoring System Based
on Bayesian Network

Mihajlo Hasanu*, Natasha Blazeska-Tabakovska**
*Faculty of Information and Communication Technologies, Bitola, Republic of Macedonia
**Faculty of Information and Communication Technologies, Bitola, Republic of Macedonia

mihajlo_hasanu@yahoo.com, natasa.tabakovska@fikt.edu.mk

Abstract— Nowadays, the educational system in each
country is facing new challenges and recent IT innovations,
which are the key factors for the success and quality of edu-
cation that will result in a more efficient and effective
knowledge transfer. Intelligent tutoring systems - ITS are a
perfect IT solution that can contribute to overcome the re-
strictions imposed by the traditional teaching and improve
the educational process. Guided by the need to improve edu-
cation, the main purpose of this paper is to offer a model of
architecture of an ITS for learning C# programing language
– CPLITS. The system is intelligent because it has imple-
mented an artificial technique called Bayesian Networks in
its architecture. The aim of CPLITS is to adapt to the differ-
ent needs of different categories of students through a mech-
anism that enables them support in the navigation through
the online learning materials, support for delivering effective
and efficient pedagogical instructions in the learning process
while solving a particular problem as well as structuring of
the teaching curriculum based on the student’s profile.

Keywords— intelligent tutoring systems, model of intelligent tu-
toring systems, Bayesian network

I.INTRODUCTION

Studies of student learning have long shown that learn-
ing can be more effective if it is performed through private
tutoring rather than teaching in a classroom [1]. In class-
room teaching, all the students have to listen to the same
lectures regardless of the knowledge that they have and
theirs learning preferences. It is not possible for the teacher
to deliver a lecture that is customized to each student’s ex-
isting knowledge. An Intelligent Tutoring System (ITS)
can address this problem. The ITS will enable the student
to learn the material at their own learning speed, and can
teach the materials that are relevant to the students’ current
knowledge and provide help that is specific to the students’
problem [2]. By its nature, ITS can be defined as computer
software systems that try to mimic the methods and dialogs
of natural human tutors, to generate teaching activities in
real time or at the request of different categories of stu-
dents [3]. Over the years, ITS have been a subject of con-
tinuous changes and improvements evolving from com-
puter aided instruction into intelligent computer aided in-
struction, today known as ITS, using various AI techniques
such as: Bayesian networks, intelligent agents, fuzzy logic,
neural networks, ontologies and many more that makes
this system intelligent and more sophisticated.

The main goal of this paper is to present a design ap-
proach of an intelligent tutoring system that will adapt to
the different needs of different categories of students

through a mechanism that enables them support in the nav-
igation through the online learning materials, support for
delivering effective and efficient pedagogical instructions
as well as structuring of the teaching curriculum based on
the student’s profile. The rests of this paper is organized as
follows. Design approach of intelligent tutoring system
known as CPLITS is discussed in Section 2. Section 3
gives an overview of the proposed architecture of CPLITS
with brief description of its components, as well as struc-
turing of the Bayesian Network implanted in the system.
The last section provides concluding remarks and future
directions for our work.

II.DESIGN APPROACH OF AN INTELLIGENT TUTORING
SYSTEM

Intelligent tutoring systems are designed in a way that
in their structure incorporate techniques of the Artificial
Intelligence - AI in order to provide tutors who will know
how to teach, what to teach and how to adequately make
knowledge transfer to the student. Examples of ITSs [4],
[5], [6], [7], [8] present various ways of dealing with the
problem of tutoring using the computer, suggesting differ-
ent approaches. The main characteristic that increases ef-
fectiveness to the task of teaching with an ITS, is system
adaptability to the student. Assessing the user state of
knowledge and profile requires uncertainty reasoning [4].
Each student has their own characteristic which influences
their understanding to interpret learning material. Students
receive knowledge in different ways, including hearing
and seeing; by reflecting and acting; reasoning either logi-
cally or intuitively; by memorizing or visualizing and
drawing analogies; and, either steadily or in small bits and
large pieces [9]. So, the students must be provided with
material models that meet with their personality and their
previous knowledge.

Several researchers have tried to show the power of
adaptability of the system [10], [11]. For example, a stu-
dent in an adaptive educational system will be given a
presentation that is adapted to his knowledge of the subject,
and a suggested set of most relevant links to proceed fur-
ther [12].

Taking everything mentioned above into consideration,
we are proposing a model of intelligent tutoring system –
CPLITS. CPLITS is intended for students who want to
start learning the key concepts of the C# programming lan-
guage. The architecture of the proposed model, including
its main components and sub-components, as well as mod-
eling the Bayesian Network that will be implemented in

69

mailto:mihajlo_hasanu@yahoo.com
mailto:natasa.tabakovska@fikt.edu.mk

system’s architecture. The proposed system is a web-based
system.

III.ARCHITECTURE OF CPLITS
Intelligent tutoring systems are characterized by the

fact that they store three basic kinds of knowledge: domain
knowledge, knowledge about learners and pedagogical
knowledge. This knowledge types define the main mod-
ules of the system’s architecture: the domain knowledge
module, the student knowledge module and the pedagogi-
cal module. So, the architecture of the proposed system is
composed of the following modules: (1) student module;
(2) knowledge base module; (3) teaching module; and two
additional modules: (4) user interface module that act as a
communication bridge between the system and the stu-
dent; (5) Bayesian Network module; each of which is de-
composed to submodules. The architecture of CPLITS is a
client-server architecture. The system is web-based and
can be accessed from anywhere, at any time using any of
the popular web-browsers. The client part contains the user
interface for establishing interaction between the student
and the system while the server part contains the remaining
modules of the system. Figure 1. Shows the full represen-
tation of the architecture.

The student module accumulates all of the relevant data
related to the student and it contains several submodules:
student profile; database with personal information stor-
age; knowledge mastery values/learning style and activity
recorder. The student’s profile is the main figure that has
function to accumulate all the necessary information ob-
tained from the other submodules so that the final result
would be creating report for the student with records such
as personality information, progression of the student as
he\she manages through the learning materials, learning
style, overall time spent on the topic, test results and so on.
Each generated profile is unique and features a different
learning style defined by Felder-Silverman model [9] for
categorizing students based on their learning style.

Fig. 1. Representation of the general architecture of CPLITS with
their modules and submodules

The knowledge base module covers the key basic con-
cepts needed for understanding the bases of C# program-
ming language regarding the console application. The stu-
dent will have chance to get introduction in the program-
ming language, data types, operators, variables, control
structures, functions, complex data structures and classes.

This module is divided into: theoretical materials of vari-
ous visual formats like text documents, presentations, vid-
eos; practical assignments both basic and advanced level;
question test repository with different difficulty level of
questions; solution keys and prior knowledge that is a base
for initializing the parameters in the Bayesian Network.

The teaching module is in charge of leading the student
through the learning process and deciding what materials
to present to the student regarding the generated learning
style. This module contains: strategic manager; feedback
generator; hint advisor and organizer of the teaching cur-
riculum. The strategic manager is the main component that
coordinate others submodules with function to analyze the
structure of the content of each learning concept by estab-
lishing communication with the knowledge base, provid-
ing helpful instructions and recommendations in solving a
particular problem. It also provides up-to-date feedback
and as well as generating tests from the test database, or-
ganizing the theory and the practical assessments.

The user interface module is the communication bridge
between the student and the system. Potential users in the
system are: students and administrator. The administrator
has full control of the system and is responsible for main-
taining the system, creating learning materials, defining
the parameters of the Bayesian Network from previous ex-
periences that the students have shown during the study of
the matter. On the other hand, when the students get in
touch with the system it needs to make signing with user
account through the log manager in order to create its own
profile. Afterwards learning style is required to be created
by answering the questions proposed in the Felder-Silver-
man test in order to make categorization of students in one
of the learning style regarding the organizing of theory ma-
terials [13] as shown in Table 1.

TABLE 1. DIFFERENT CATEGORIES OF LEARNING STYLES

Cate-
gory

Learning style Preferred format

1 Reflective, visual and se-
quential

Multimedia lectures

2 Reflective, intuitive and
verbal

Theoretical lectures - text

3 Active, sensing and global Case study with practical
tasks

After defining the learning style the student can pro-
ceed with learning a particular concept through navigation
of the learning materials. Each concept represents a learn-
ing package consisted of theory part, practical assignments
and test. In other word the student will need to pass three
stages of the learning process: (1) regular study that covers
the theory, (2) problem study that covers the practical part
with different level of difficulty and (3) quick test study
that covers evaluation of student’s knowledge by answer-
ing questions in generated test with different difficulty
level regarding the student’s knowledge. By the end of
each stage the system will present to the student two op-
tions before he can continue to next concept: 1- understand
the concept, 2-don’t understand, repeated. Additionally, it
will present some recommendations in order to improve
the learning process for the future concepts.

70

International Conference on Applied Internet and
Information Technologies, 2018

DOI:10.20544/AIIT2018.P15

The Bayesian Network module is consisted of Bayesian
model for organizing and navigating through learning ma-
terials represented as nodes and arc between nodes.

A. Application of Bayesian Networks in CPLITS
Bayesian Networks - BN are graphical models i.e. di-

rected acyclic graphs for reasoning under uncertainty. As
a graphical model of probability, it represents casual rela-
tionships of probability between set of random variables
and their conditional dependencies.

BN as AI technique in ITS are used for various pur-
poses such as modeling the student’s module in order to
help students in personalized learning environment, for
structuring teaching strategies in order to provide effective
and efficient pedagogical guidance for the student in the
learning process, structuring of teaching materials for
more flexible and easier access, monitoring, evaluating
and updating the level of student’s knowledge and prefer-
ences. BN in CPLITS are used for structuring of the prob-
lem from a particular domain, for tracking student’s
knowledge and guiding the student how to learn and what
to learn next. The proposed model of BN for CPLITS it’s
shown in Figure 2 and it’s developed in GeNIe Modeler,
software solution for representing BN.

Fig. 2. Full representation of 6-th level BN for navigation

The structure of the Bayesian network consists of
nodes and connections that represent the interdependences
between. The total number of nodes in the network is 19
nodes with 31 connections between the nodes. Adding the
directed arc from one node to another is done in order to
determine whether the knowledge of the previous concept
is a prerequisite for learning the next concept. The nodes
in the BN are organized in six levels depending on the con-
tents of the materials that the student will learn: (1) Intro-
duction in programming, (2) Basic concepts in C#, (3)

Control structures, (4) Functions, (5) Complex data struc-
tures and (6) Classes. Because of this organization, the BN
can be known as 6-th level BN for navigation through learn-
ing materials of the C# programming language. Each of
these levels corresponds to one of the knowledge mastery
values. First and second level correspond to beginner with
some knowledge in the area, third and fourth correspond
to intermediate level of knowing the area, and the last two
levels correspond to advanced level of knowing the area.
After defining the structure of the BN next step is to cal-
culate the conditional probabilities between the nodes in
the network. For that purpose, it is required to create con-
ditional probability tables - CPT that shows the probability
for two or more conditionally dependent nodes – events.
The formula of Bayes’ Theorem for updating of the values
in the network is going to be used for calculating the prob-
abilities.

Considering that the nodes in the network are defined
and the conditional probability tables are fulfilled from the
parameters from the prior knowledge database, the net-
work can be updated in situation where no observations are
made of any event, i.e. the nodes takes the initial values of
probabilities they have. Each node has their own probabil-
ity and the occurrence state of every node can be “mas-
tered” and “not mastered” that refers to the concept. To
make it easier for the student to navigate through the ma-
terials, CPLITS marks the learning concepts with appro-
priate colors and signs in terms of which concepts are
learned and which are not learned. Such material markings
are generated from the BN in the system and can be cate-
gorized according to the three criteria: (1) mastered con-
cepts, (2) concepts that can be learned and (3) concepts that
are not available for learning. The markings for the con-
cepts can be of the following character: green color with
tinted sign, blue color with unlocked padlock and grey
color with locked padlock appropriately for mastered con-
cepts, concepts that can be learned and concepts that are
not available for learning. This marking is done in order to
help the student to gain an insight for the current
knowledge level of each concepts and guidance for what
he\she can learn further. Furthermore, a concept can be cat-
egorized as mastered only if the BN show that the proba-
bility value P (concept = mastered | evidence) is greater or
equal to 0.7, where evidence is a variable for the student’s
knowledge of the previous learning concept. A concept can
be categorized as concept that can be learned only in situ-
ation where all previous concepts of the previous level are
marked as mastered concepts with probability greater or
equal to 0.7. Finally, a concept can be categorized as con-
cept not available for learning only in situation when there
is at least one prerequisite concept that is not mastered.

 After everything is defined we can calculate the prob-
ability that the student has mastered the concept - variables
and data types before any evidence is observed i.e. prior
probability. For that purpose, CPTs are presented in Table
2 and Table 3.

 Table 2. Given CPT for introduction in programming and variables
and data types

Introduction in programming - I

Mastered 0.71

not mastered 0.29

71

Table 3. Given CPT for introduction in programming and variables
and data types

Introduction in
programming - I

mastered not mastered

Variables and data
types - VDT

mastered 0.72 0.21

not mastered 0.28 0.79

Based on the above data from the CPTs we can calcu-
late the probability for variables and data types such as:

𝑃[𝑉𝐷𝑇 = 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑] = 𝑃[𝑉𝐷𝑇 = 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑 | 𝐼
= 𝑚𝑎𝑠𝑡𝑒𝑟𝑑] ∗ 𝑃 (𝐼 = 𝑚𝑎𝑡𝑒𝑟𝑒𝑑)

+ 𝑃(𝑉𝐷𝑇 = 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑 | 𝐼 = 𝑛𝑜𝑡 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑) ∗ 𝑃 (𝐼
= 𝑛𝑜𝑡 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑)

= 0.72 ∗ 0.71 + 0.21 ∗ 0.29 = 0.57 ∗ 100 = 57% (1)

The obtained results show that 57% or 0.57 is the prob-
ability that the student is prepared to master the concept
variables and data types. The calculated results for the rest
nodes in the network are shown in Figure 3.

Fig. 3. Updated values of probabilities in BN without observing any
evidence

In the same way the posterior probability can be calcu-
lated i.e. probability after certain nodes-evidences are ob-
served. For the abovementioned example, we can calculate
the probability that the student has mastered variables and
data types after mastering the concept introduction to pro-
gramming. The formula has the following form:

𝑃[𝑉𝐷𝑇|𝐼] =
𝑃[𝑉𝐷𝑇, 𝐼]

𝑃[𝐼]

=
𝑃[𝑉𝐷𝑇 = 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑|𝐼 = 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑]𝑃[𝐼 = 𝑚𝑎𝑠𝑡𝑒𝑟𝑑]

𝑃(𝐼 = 𝑚𝑎𝑠𝑡𝑒𝑑)

= 0.72∗0.71
0.17

= 0.5112
0.71

= 0.72 ∗ 100 = 72% (2)

The results for the computed posterior probabilities are
shown in Figure 4.

 It can be concluded that 72% is the probability that the
student masters the concept variables and data types by
previously mastering introduction to programming.

Fig. 4. Updated values of probabilities in BN with observing evi-
dence

In the same way, the probabilities can be computed for
the rest of the nodes. By using GeNIe Modeler these com-
putations can be done automatically.

IV.CONCLUSION

Nowadays the effectivity of the education is mostly
due to the development of information and communication
technologies in order to improve the knowledge transfer to
students. ITS as one link from the chain of information
technologies have found adequate application in educa-
tion. In this paper it has been developed a model of ITS
that will aid student to better understand the concepts of
C# programming language by giving them support in the
navigation through learning materials how to learn and
what to learn in the upcoming concepts. The beneficiaries
of using this system will allow to student to learn at a dis-
tance with time and costs savings. It also provides them
much more personalization and adaptability, user-friendly
interface that follow the concept one-size fits all and the
most important thing increase the level of effective and ef-
ficient motivation in the learning process. In the future, the
efforts would be concentrated on implementing the system
in a final software solution by writing code, updating the
model in terms of expanding the system's functionalities,
adding new learning concepts and implementing the
Bayesian Network via the SMILE platform offered by
BAYES FUSION, an independent library based on C #,
Java, .NET and Python.

REFERENCES
[1]. J. R. Anderson, and B. J. Reiser, “The LISP tutor”, Byte, 10(4),

1985, pp.159-175
[2]. B. P. Woolf, “Building intelligent interactive tutors: Student-

centered strategies for revolutionizing e-learning”, Burlington, MA,
USA: Morgan Kaufmann, 2008

[3]. J.D. Fletcher, “Research Foundations for the Advanced Distributed
Learning Initiative”, Institute for defense analyses- Advanced Dis-
tributed Learning Center for Intelligent Tutoring Systems Research
& Development, 2010

[4]. H. Gamboa, and A. Fred, “Designing intelligent tutoring systems: a
Bayesian approach”, ICEIS 2001 - Artificial Intelligence and Deci-
sion Support Systems, 2001, pp.452-458

[5]. A. E. Permanasari, I. Hidayah, and S. Nugraha, “A Student Model-
ing Based on Bayesian Network Framework for Characterizing Stu-
dent Learning Style”, Journal of Computational and Theoretical Na-
noscience · October 2014, DOI: 10.1166/asl.2014.5702, Advanced
Science Letters Vol. 20, 2014, pp.1936-1940

[6]. K. G. Schulze, R. N. Shelby, D. J. Treacy, M. C. Wintersgill, K.
Vanlehn, and A. Gertner, “An intelligent tutor for classical physics”,
2000, The Journal of Electronic Publishing, University of Michigan
Press. http://www.press.umich.edu/ jep/06-01/schulze.html

[7]. C. J. Butz, Sh. Hua, and R. B. Maguire, “A web-based Bayesian
intelligent tutoring system for computer programming”, Web Intel-
ligence and Agent Systems, 4(1), 2006, pp.77–97

[8]. Y. Wang, and J. Beck, “Class vs. Student in a Bayesian Network
Student Model”, K. Yacef et al. (Eds.): AIED 2013, LNAI 7926, pp.
151–160, 2013. Springer-Verlag Berlin Heidelberg 2013

[9]. R. Felder, and L. Silverman, “Learning and Teaching Styles”, Jour-
nal of Engineering Education, 78 (7), 1988, pp.674–681

[10]. Y. Wang, and N.T. Heffernan, “The Student Skill Model”, In: Cerri,
S.A., Clancey, W.J., Papa- dourakis, G., Panourgia, K. (eds.) ITS
2012. LNCS, vol. 7315, 2012, pp. 399–404. Springer, Heidelberg

[11]. Z.A. Pardos, and N.T. Heffernan, “Modeling Individualization in a
Bayesian Networks Implementation of Knowledge Tracing” In: De
Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075,
2010, pp. 255–266. Springer, Heidelberg

[12]. P. Brusilovsky, “Adaptive hypermedia. User modeling and user-
adapted interaction”, 11(1-2), 2001, pp.87–110

[13]. Blažeska-Tabakovska, N., Ivanović, M., Klašnja-Milićević, A.,
and Ivković, J. ” Comparison of E-Learning Personalization Sys-
tems: Protus and PLeMSys”, International Journal: Emerging
Technologies in Learning, iJET, vol.12, no.1, 2017, pp.57-70.

72

International Conference on Applied Internet and
Information Technologies, 2018

DOI:10.20544/AIIT2018.P16

Trends in software maintenance support tasks:
A study in a micro software company

Zeljko Stojanov* and Jelena Stojanov*
* University of Novi Sad / Technical faculty “Mihajlo Pupin”, Zrenjanin, Serbia

zeljko.stojanov@uns.ac.rs, jelena.stojanov@uns.ac.rs

Abstract - Support tasks in software maintenance relates to
tasks that help in ensuring proper functioning of software
applications without modifying them. These tasks include
training, consultation, clients’ data management, installation
and configuration of software applications. The aim of this
study is to investigate trends in support maintenance tasks
performed in a micro software company. Tasks’ related data
are extracted from the company internal repository of tasks.
Trend analysis is based on descriptive statistical methods and
proposed support task typology that reflects the real
maintenance practice in the company. The analysis relates to
trends in working hours spent by programmers on solving
support tasks and distribution of tasks among senior and
junior programmers. The results of trend analysis are useful
for planning and decision-making activities in the selected
company. Benefits for the company, limitations of the study,
and research implications are outlined.

I. INTRODUCTION

Software maintenance is the costliest part of software
life cycle, consuming over 50% of all costs [1,2,3,4]. Even
more, maintenance costs for software systems being used
for long time greatly exceed software development costs
[5]. Although software maintenance has been recognized as
very important for productivity and efficiency of software
organizations [6], maintenance tasks are treated as short
term tasks that should be completed as fast as possible [3].
In addition, maintenance tasks are considered among
software engineers as less interesting and boring comparing
to software development tasks, which often causes
avoidance of these tasks [7].

Software maintenance has been researched over 40
years. In this period, several classifications and typologies
of maintenance types have been proposed in software
engineering literature. The first and the most influential
typology in software maintenance is defined in 1976 by
Swanson [8]. It includes corrective, adaptive and perfective
tasks. This typology is extended with preventive
maintenance in Standard for Software Engineering-
Software Maintenance, ISO/IEC 14764 [9]. Chapin et al.
[10] proposed more detailed classification of maintenance
tasks based on the modifications implemented on software
applications (software, code, customer-experienced
function). This extended typology includes 12 types of
tasks grouped in 4 clusters: support interface,
documentation, software properties, and business rules.
Support interface includes tasks such as trainings,
consultations and evaluations of software systems. Due to
the high importance of software modifications in software

maintenance (software properties and business rules
clusters), support interface is categorized as less important,
and therefore much less researched segment of software
maintenance practice. Regardless of the maintenance task
type, software maintenance tasks should have minimal
impact on clients’ business performance [11].

In the book Software Engineering Best Practices [12]
Jonas identified customer support as one of the main cost
drivers in software life cycle since it is highly labor
intensive and generally unsatisfactory. Kitchenham et al.
[13] proposed a maintenance ontology aimed at identifying
factors that influence software maintenance, according to
which software organizations should organize and manage
support activities into well-defined roles performed by
skilled staff. This ontology proposes organization of
maintenance support in the following three levels: (1) Non-
technical help desk staff engaged for logging problems and
providing the first assistance to software users, (2)
Technical support that communicate with end users,
understand their problems and can suggest some quick
solutions, and (3) Maintenance (software) engineers that do
modifications on software products.

Software maintenance management requires careful
and on time management activities to reduce errors and
ensure software usefulness for end users[14]. One of the
most reliable ways to detect problems and potential
improvements in software maintenance is to collect data in
a real industrial setting and conduct data analysis to identify
trends in everyday maintenance practice. Efficient and
reliable trend analysis in software maintenance is based on
[15]: (1) well defined software maintenance processes, (2)
tracking of software maintenance requests on daily basis,
(3) precisely defined procedures for collecting relevant
data, and (4) validated data that are extracted for the
proposed measurement goals.

Based on the above discussion, investigation of support
tasks trends in software maintenance is proposed as the aim
of this study. The rest of the paper is organized as follows.
Related work section outlines studies related to trends in
software maintenance and justifies the need for researching
support maintenance tasks in industrial practice. The third
section presents the study aimed at investigating trends in
maintenance support tasks in a local micro software
company in Serbia. The fourth section presents discussion
of benefits for the company, limitations of the study, and
research implications for industry practitioners and
researchers. The last section contains concluding remarks
and brief reference to future research directions.

73

II. RELATED WORK

Trend analysis in software maintenance is used for
detecting issues in everyday industrial practice. It requires
collecting reliable data in an appropriate period, which are
suitable for achieving proposed research goals and are
aligned with the goals of organization involved in the
research [16]. However, the use of traditional management
techniques is not completely applicable in software
maintenance due to specific internal organization of
software companies and non-material nature of software
products. This section outlines some empirical studies
dealing with trend analysis in software maintenance and
justifies the need for inquiring trends in software
maintenance support tasks.

Kenmei et al. [17] organized an empirical study aimed
at investigating trends of change requests based on time
series. Data were extracted from version control and bug
tracking systems for open source software projects Eclipse,
JBoss and Mozilla. Created model enables prediction of
number of change requests to be received in next 2 to 6
weeks, which is important for project staffing and planning.

April [15] presented an empirical study with trend
analysis of supply and demand of software maintenance
services. Maintenance demand is defined as a total of all
received maintenance requests, while supply is total of all
services given to customers. The study was conducted in
Integratik, an ERP development firm in Canada, as a part
of software process improvement project. The aim of a
developed trend model is to help in managing customer
expectations from software maintenance. Trend analysis is
performed in a way that enable identification of trends
related to personnel workload and trends for delivered
software systems.

Bando and Tanaka [18] presented trend analysis of
accidents occurred in financial information systems. Data
collection included several sources: newspapers, news
release on websites, magazines and books. Trend analysis
of accidents was performed according to type, severity and
faults. Trend analysis identified the following types of
accidents: service related, processing related, information
related, and cybercrime related. The results of trend
analysis revealed that human made faults are increasing
more than physical faults. Based on results, the authors
proposed several priority issues for dependability
improvements of cases such as repeated accidents, frequent
accidents, human-made mistakes, or software quality.

Trend analysis aimed at identifying trends in
maintenance request processing in a very small software
company is presented in [19]. Trend analysis is used within
software process improvement project, with the main
objective to identify segments of maintenance practice that
should be improved. Data analysis was used for identifying
monthly trends for number of maintenance requests,
number of spent working hours on solving requests,
distribution of requests per maintenance types (tasks). For
data analysis is used maintenance task typology developed
in the company. As one of the results of maintenance
processes improvement project, a new task typology was
developed by considering the context in the company and
relevant scientific literature [20]. Trend analysis aimed at
investigating distribution of maintenance tasks among

programmers according to a newly proposed typology is
presented in [20].

Aggarwal et al. [21] conducted a study aimed at
investigating trends for Chromium Browser Project. The
trends relate to bugs extracted from Issue Tracking Systems
(ITS) for the selected software. Each bug report contains
the following fields: Priority(Pri), Category(Cr), Operating
System(OS), Milestone(M) and Type. Trends are used for
discovering topics in bug descriptions that mostly attract
developers, which enables discovering of duplicated bugs
and reopened bugs. The results of trend analysis are useful
for expertise modeling, resource allocation and knowledge
management.

This short literature review revealed that trend analysis
is used for investigating software maintenance practice.
The common objectives are to identify trends in the
selected segment of practice and to propose improvements
or to estimate future trends. Presented studies deal with
business software applications purposely developed for
specific group of clients [15,18,19,20] or with open source
software projects [17,21], considering general maintenance
trends or trends related to corrective tasks. However, there
are no identified studies dedicated to support tasks in
software maintenance. The study presented in this paper
aims at filling this gap in research literature and
contributing to empirical knowledge base in the field of
software maintenance.

III. CASE STUDY

The study was carried out in an indigenous software
company focused on producing business software
applications for local clients in Serbia. According to User
guide to the SME Definition published by European
Commission [22], the company can be classified as a micro
enterprise since it has 7 employees (6 programmers and 1
technical secretary). In total, 48 software applications are
used by over 100 clients in Serbia. The study objective is to
identify trends in supportive maintenance performed in the
company and based on the results to propose directions for
improving everyday practice.

A. Software maintenance trends
Data extracted from the company internal repository of

tasks were used for data analysis. The data were extracted
from the repository by using SQL scripts, and after that they
are imported in MS Excel for further processing and
analysis. Analyzing trends requires data collected from a
longer period, which ensures identification of trends
relevant for the practice to be investigated [23]. Data
analysis is based on 2293 software maintenance tasks
performed in the period of 19 months, starting from
February 2013. According to detailed investigation of
maintenance tasks’ trends [20], 2036 tasks were classified
as maintenance tasks, which is 88.79% of all tasks.

Classification of maintenance tasks was performed
based on a new typology introduced in [20]. The following
types of maintenance tasks were included in the typology:
adaptation, correction, enhancement, preventive, and
support. Based on the data analysis presented in [20], 467
support tasks were identified, which is 22.94% of all
maintenance tasks. Since support tasks relates to providing

74

