
65

Snezana Savoska,

snezana.savoska@uklo.edu.mk

Abstract. Development of software models with specialized notations permits non-

could be converted for input on software development environments. UML is the
most popular notation used today in these environments. The aim of this paper is

Keywords: Z-notation, UML, relational data model.

1 Introduction

Z-notation [1] has a long history. In 2002 it was accepted as ISO standard. Z-

maximally abstracts.
UML [2] has been developed by OMG as notation for object-oriented design.

Object-oriented approach with UML design for software development is de-
facto industrial standard used in commercially available software development
environments.

2 Relational Schema

are used relational names, relational columns and values:

[RNAMES, CNAMES, VALUES]

not modeled in UML. RNAMES and VALUES are modeled initially with classes

66

sections.

DOMAINS ==
1
 VALUES

values (VALUES). In UML, domains are modeled as compositions of values. The
empty domain (empty composition) is included. It is not a big deviation from the

Every value could be used in more than one domain, but could not be
component of any domain.

type Integer is in reality the subset of integers that can be represented on the

SCHEMA
1
 DOMAINS

with domains.

In Z-notation, sequences are indexed with naturals. A sequence in mathematics
could be indexed with any countable set. So, it is not a big deviation in that case
instead naturals to be used Integer for indexing. The most important property
remains: domains in the schema are ordered.

67

approach could be used, i.e. database schema could be represented as a class
with attributes and operations, where an attribute (or attributes) would map
relation names to schemas. This mapping in UML terms is association and it
is not recommended association to be hidden with attributes. That the reason
why database schema is modeled as association between relation names and
schemas.

Multiplicity of this association is zero or one at both ends. The association is
directed from relation names to schemas, because navigation in the other direction
is not needed at this time. All associations in the diagram are minimal is sense that

Initially, the set of relational schemas is empty:

In Z-notation above Z-schema is a constructor. In this case database schema
is not modeled with a class and no constructor could be created. The association
depends on classes that it connects.

In object-oriented systems, the hypothesis is that, when the system starts,
there no objects and only after the initialization new objects and links among
them are created. So, by default, the set of links between relation names and
schemas, initially, is empty.

68

Database schema has three operations: add, remove and update of relation
schema. These operations manage links between RNAMES and SCHEMA. The

the association, i.e. the association between RNAMES and SCHEMA could be with
class-association and operations could be placed there. In these case operations
have to be static, because they create, remove and update links – instances of
the association. The second possibility is to put them on RNAMES, where they
would be instance operations with side effect on links of the association. This
approach is better, because association, in reality, is implemented with one or
two attributes in one or both participating classes (association ends are pseudo-
attributes in UML) and every change of the link means change of attributes of
these objects. So, this location is used in the UML-model:

69

There are more possibilities where to place these operations: in class SCHEMA
or in another class modeling database schema. These variants go way from original
concept. First of them is equivalent to the chosen one only if the association is
bidirectional, but it is not true. Second variant could be implemented only with
global side effects of the operations that would be hidden in the UML-model.

operations. The effects of last ones are described in OCL pre- and post-conditions.
For the operation Add(), pre-condition require no link to exist between the relation
name and any schema: schema->isEmpty()

argument, by default, for Add(). Post-condition of Add() requires a link to be
established between relation name and the schema (supplied as argument of Add())
objects: schema = s. Post-condition of operation Add() in the UML-model

changed parts and by default all other parts remain unchanged (Frame Problem of

names and schemas remain the same. Here, the only changed part is the link and
that is why in the UML-model of Add() such a post-condition is used. In just a same
way, post-conditions of the other two operations are re-mastered.

Relation names in the relational model of data are strings. In the UML-model
they are objects. Every object in UML is unique, i.e. it has identity, and it follows
that relation names are unique in the UML-model. When the UML-model will
be further detailed an attribute of type string will be introduced in RNAMES
to represent the symbolic name of the relation. This means that an invariant in
RNAMES has to be introduced in the future to warranty that relation names (the
string attributes values) are unique. Every RNAMES object has to have a unique
name.

one is the database schema. The second one is a set of all relation instances. In the
next section database instance is modeled.

70

3 Database Instance

Relational instance is a set of all its tuples in the current moment. For this purpose,

TUPLES == seq
1
 VALUES

modeled with domains. Schemas and tuples can be modeled with attributes. For
example, in class TUPLES can be introduced an attribute of type VALUES with

is not recommended in UML.

Relation is modeled in the same way with the class RELATION. This class
has association with a relation name. The association shows that every relation
has to have relation name and transitively schema, but it is not obligatory every
relation name to be bounded with a relation and vice versa. These constraints are

71

Every relation instance is a set of tuples. It is modeled with an association
between relation and tuples. Relation instance could be empty and it is modeled
with a star for multiplicity put on the association end at the class TUPLES.

Every tuple participates in exactly one relation. Relation tuples must follow
relation schema. Tuples can be associated with relation (relation name) or directly

(relation object) as it is modeled with two invariants:
tuples.values->size() = name.schema->size()
and
let n:Integer = name.schema->size()

in Set{1..n}->forAll(i | name.schema.domains[i].
values->includesAll(tuples.values[i]))

Tuples are lists of values from relational model point of view. In object-
relational model every tuple is an object and has its own identity. This means
that in object-relational model two tuples can be just same lists of values and to

the pure relational model. The UML-model accepts object-relational model: two
tuples in one relation can be the same lists of values, but as TUPLES objects to
be different tuples.

If pure relational interpretation is needed, in RELATION an additional
invariant could be added to warrantee that all tuples in the relation are different
only when they are different as lists of values. This invariant could be alternatively
part of TUPLES, but that is not the way of the UML-model.

72

This initialization of relation instance is a constructor in object-oriented
terms. It can be modeled as static operation it RELATION. This operation would
bind relation name with relation schema and create an empty instance for that
relation. In the UML-model, constructors of all kinds are not modeled to simplify
the model.

for tuple appliance to a relation schema. CHECK is used in relation operations:
add and delete tuple. This check doubles relation invariant and is not needed. If

needed to separate successful operations from unsuccessful ones, but this is not
the case. In UML, there are features specially designed for errors – operation
exceptions.

So, the operation Insert() simply adds and operation Delete() removes a tuple
to/from the relation instance, i.e. they add/remove link between the relation and
a tuple.

73

The pre-condition of Insert() requires the new tuple not to be one of the
relation instance: tuples->excludes(t), the pre-condition of Delete()
requires the opposite: tuples->includes(t).

The post-conditions of Insert() and Delete() operations are:
tuples = tuples@pre->union(Set{t})
tuples = tuples@pre - Set {t}

names into relations

Here, again the problem is to hide the association with attribute in a class or
not. Following UML recommendations, the second approach is used.

74

relations. It is possible this aggregate to be empty, but every relation has to be
assigned to exactly one database.

This constructor is not modeled following above mentioned reasons.

75

They add/remove relation instance to/from database instance. The real operations

and its instance. In the UML-model, relational schema and its instance are
associated through the class RELATION. This approach is used the relational
model – there is no clear notation for relation schema and relation instance as
in object-oriented approach for class and class extent. Supporting Z-schemas

Drop(). In UML, it is possible to simplify the operations names, because they
are local in the class. In Z-notation, Z-schema names are global and have to be

has to be used.
Create() pre-condition is: relation.name->excludes(n) and its

post-condition is: relation.name->includes(n) and n.relation.
tuples->isEmpty().

Drop() pre-condition is: relation.name->includes(n) and its post-
condition is: relation.name->excludes(n).

76

relation.name-

>includes(n) and its post-condition is: relation->includes(r) and
r.name =n.

with named relation columns.

This extension is not included in the UML-model, because the model has to
re-mastered and step by step modeling would be lost.

4 Conclusion

UML, association may be hidden with attributes and its concept becomes hidden
for the reader that is why it is recommended associations to be used instead of
attributes.

The UML-model presented here is very abstract – it needs of further re-
mastering. For example, the classes RNAMES and SCHEMA form relational
database catalog. The last one could be implemented with relations, i.e. the catalog
has to be described in terms of relations with self-describing initialization.

described in [4]. There semantics of the model is based on the domains. In the

is not well supported. These implementations are based on SQL that has been
developed as a common query language for relational and hierarchical databases,
and as result of that semantics of relational model has been lost.

The whole UML-model as class diagram is:

77

model at higher level of abstraction.
Finally, relational model is packed with query language; relational algebra is

78

in [6]. The last one is the natural direction for further modeling of relational
model in UML.

References

Type System and Semantics, www.iso.org.

-387 (1970)

Atomic Nuclei, Letters, Vol. 8, No. 4(167), 655—663 (2011)

