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Abstract. The recent trends in healthcare as e-health and electronic hospital health 
services pushed healthcare systems to a patient-centric concept, collecting a large 
amount of data in Electronic or Personal Health Records, providing evidence-
based medicine and data analysis. This concept, together with the pervasive health 
care environments, can generate recommendations and suggestions for preventive 
intervention, depending on some measured parameters of the patient at home. This 
can improve the healthcare service from home, based on the health conditions, 
disease history, and data gained from vital sign sensors according to the Internet of 
Things Smart living concept. From the technical point of view, a remote monitoring 
system can provide remote consultation as a part of Assistive technology trends. We 
used cloud and fog computing for experiment with noninvasive sensors that can 
follow humans’ sleeping activities towards detecting sleep apnea, to demonstrate 
the fog-based data processing. With this case study, we have shown the applicability 
of fog computing and ability trough preprocessing to accomplish computational 
and bandwidth savings, protecting sensitive data privacy.

Keywords: ambient assisted leaving, fog computing, noninvasive sensors, sleep 
apnea, pervasive computing.

1. Introduction

The precision medicine, creating digital records for the patient as Electronic 
health records (EHR) or Personal Health Records (PHR), changed everyday life, 
pushing healthcare organizations to adopt computer science and information 
systems as tools to collect and analyze healthcare data according to evidence-
based medicine [1]. Patients change their need for healthcare services toward 
e-health, providing a medical care from everywhere. Data connected with 
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patients’ diagnoses, treatments, and patient care are more valuable as the concept 
of evidence-based medicine is widely used.

The second emerging technology taken into consideration is Ambient 
Assisted living, connected with implementation of Internet of Things Smart 
leaving and enabled by wearable sensors and other IoT technologies that measure 
vital sign of living and health-connected parameters [2]. The third part of the 
story is the emerging trend of cross-connected healthcare data that tackle the 
infl uence of environmental factors as exposome [3], enabling health risk 
assessment for each person taking into consideration the genotype, phenotype, 
diseases and environmental exposure [4]. All these facts pointed out that these 
large data amount produced in short time can burdening data traffi c and sometime 
producing bottlenecks in the operation of such systems.

We pointed out the recent trends in healthcare supporting systems of 
development of  patient-centric pervasive environments in addition to the 
hospital-centric one [5]. Pervasive health care takes steps to design, develop, and 
evaluate computer technologies that help citizens participate more closely in their 
healthcare [6].  A typical example is an algorithm that  generates recommendations 
and suggestions for preventive intervention instead of emergency care and 
hospital admissions [7]. The algorithm can recommend performing a specifi c 
activity that will improve the user’s health,  based on his health condition and set 
of knowledge derived from the history of the user and users with similar attitudes 
to him/her [4].

Pervasive healthcare focuses explicitly on the use of pervasive computing 
technology for developing tools and procedures that put the patient at the center 
of the health care process. From a technological standpoint, it includes remote 
monitoring, remote consultation, and assistive technologies [9].

The rapid progress of mobile technologies, sensors, Internet of Things, cloud 
and fog computing, provides the necessary infrastructure for such systems to be 
developed [2][12]. This paper describes a case study that demonstrates fog-based 
data processing within an ambient assisted living system. The data processing 
deals with data from noninvasive sensors capable of following of sleeping 
activities of humans in order to detect sleep apnea. An apnea event is described 
as a reduction in the magnitude of respiration movement to less than 5% of the 
normal value for a certain amount of time during breathing. This makes it suitable 
for different types of sensor-based detections. 

The next section of the paper describes the settings of our case study. Sections 
3 presents the obtained results. Section 4 elaborates fi ndings, while section 5 
concludes the paper and describes future work.
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  2. Case Study

In this case study, we will gather real-life sensor data and infer the applicability 
of fog computing data preprocessing in order to accomplish computational and 
bandwidth savings, together with the benefi ts of local or edge processing. 

This case study covers the data gathering and edge-computing layers of the 
architectural model present in [10].

We will consider a data fl ow model that is generated to detect sleep apnea 
using noninvasive sensors, which is illustrated in Fig. 1. The fi rst phase is to 
preprocess the data by identifying body movements. As described in [11], sleep 
apnea is accompanied by body or leg movement, which can be detected by 
noninvasive sensors. To detect movement in bed, we have used multiple PIR 
sensors and piezoelectric based sensors placed under the mattress, as shown in 
Fig. 2. We have used commercial products intended for use in baby cribs and 
have determined that it is suitable for use by adults. This sensor generates an 
electrical charge that is then transferred to the control panel using 3:5mm jack. 
More details on the sensor deployment can be found in [12].

F  ig. 1. Data Flow use case.
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Fig. 2. Placement of PIR sensors and piezoelectric based sensors placed under the mattress.

The PIR sensors are positioned using a sensor case, which we 3D print, in 
order to provide repeatability of the experiment as the position is fi xed and set at 
a predetermined angle [13]. The sensor module is then positioned above the bed 
and connected via power and signal outlets to the control panel of the lab.

An electronic circuit amplifi es the electrical charge generated by this sensor, 
and the output is relayed to the microcontroller that samples the data on every 30 
milliseconds time interval. The maximum voltage level does not have any useful 
information, and it depends on the characteristics of the amplifi er. As we are only 
interested in the distribution, we normalize the data in the interval from value 0 
to value 1.

3. Data analyzes  

Upon analyzing the data, we found that 99% of the samples have a value close to 
zero (see Table 1). This is due to the fact of low instances of extensive movement 
during the sleep.

The reason that most of the positive samples have value > 0.97 is that the 
amplifi er quickly goes to saturation. The values between 0.03 and 0.97 are mostly 
data sampled before and after the voltage from the amplifi er goes to saturation. 
Fig. 3 shows the histogram for the charge levels with a resolution of 100.
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Fig. 3. Piezoelectric sensor charge level histogram 0.03 ¡ x ¡ 0.97.

Similar to the data from the piezoelectric sensor for movement in the bed, 
96.24% of the time, all fi ve sensors were at state 0. If we look at the sensor data 
individually, as presented in Table II, the sensor facing away from the sleeping 
person (PIR1) was instead different then 0, only 0.98 % of the time (see Table 2).

From the data shown above, we can calculate the transmission data size, 
without the overhead. If we encode the piezoelectric sensor with a resolution 
of one byte, the total size would be 913kB. However, since we do not need the 
values less than 0.03, as they indicate no charge generated due to body movement, 
we do not need to transmit them. As this data represents time series, we would 
need to encode the address using four bytes and the value using one byte. For the 
values greater than 0.03, this would require 46kB (data saving of 95%). As this 
is low data rate in situations where the experiment is done in a lab with a fast 
Internet connection. There is no benefi t of introducing the fog network just to 
save bandwidth, but in the realistic scenario where the data would be transferred 
with mobile data, possibly via smart-phone, or via metropolitan IoT network such 
as LoRAWAN the addition of edge node closer to the patient is needed.

If we plot the activation of the PIR sensors, we see a graph, as shown in 
Fig. 4. On the X-axis is the time series index and Y-axis represents the number 
of PIR sensors that are active or sum of the values of the PIR sensors. We can 
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see that as the sensor was positioned directly over the bed most of the time; all 
sensors were active when the sleeping person moved in bed. The data collection 
starts when the person went to bed and ended when the person woke up. From the 
intensity of the movement, we notice that it took 25 minutes for the person to fall 
asleep. When we plot the data from the piezoelectric sensor, shown in Fig. 4b, on 
top of which we overlay the graph of PIR sensors with at least one active sensor, 
the correlation between them is evident.

In order to investigate further, we zoom on one hour during sleep time, in our 
case, 04:35, from the start of the data recording. In Figure 5a, we show the plot of 
the count of active PIR sensors. In Figure 5b, we show the plot of the electrical 
charge of the piezoelectric sensor. Here we notice an excellent correlation in six 
events. However, two instances only appear at around 04:48:30 and 05:01:30; 
they are shown by the thinnest lines and are shortest. We assume it might be a leg 
movement under the blanket and therefore it is not registered on the PIR sensors.

Fig. 4.  a) PIR sensor activation (over 8-hour sleep).
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Fig. 4. b) PIR and Piezo sensor activation (over 8-hour sleep).

Fig. 5. a ) Active PIR sensors from 04:35 to 05:35.
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Fig.  5. b) Piezoelectric sensor charge (normalized) from 04:35 to 05:35.

Next, we isolate and zoom on the event between those two lines at 04:58. We 
select the 30-second range from 04:58:30 to 04:59:00. Figure 6a shows the count 
of the active PIR sensors for that period. Fig. 6b shows the detected electrical 
charge from the piezoelectric sensor in the same period.

Aside from the established correlation, we notice that PIR sensors are 
activated one after another. For the fourth sensor to activate, it takes a longer 
time. The other sensors activate faster and deactivate more slowly. We can see that 
some PIR sensors remain active after the piezoelectric sensor no longer detects 
movement. This is a property of the PIR sensor; they have a potentiometer that 
sets the signal delay, which keeps the sensor at a positive state for a short period 
after the motion is no longer detected. This feature enables detection when the 
sampling rate is lower. 

Fig. 6. a) Active PIR sensors from 04:58:30 to 04:59:00.
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Fig. 6. b) Piezoelectric sensor charge (normalized) from 04:58:30 to 04:59:00.

When motion is detected, the sensor data from multiple noninvasive sensors 
is processed on the edge node. The local machine-learning model is run, and the 
possible occurrence of sleep apnea is diagnosed. To label the data set, periodical 
sessions can be conducted that will include more invasive sensors to detect sleep 
apnea using well established medical diagnostic tools [14], including observations 
by medical professionals. After anonymization of the data, it is packaged and sent 
to the cloud for additional processing. The data model on the cloud side is run to 
verify the outcome for the received data. If the model present in the cloud makes 
positive detection for the received data and if the data was previously labeled 
with the negative result by the edge node, then the updated model is sent back to 
the edge node, which in turn processes the data against the updated model. Sensor 
data that does not suggest reliable negative results are marked for further labeling 
if additional data such as monitoring from medical equipment or video, that can 
be analyzed by trained professional, if available. Such feedback is periodically 
included in building the cloud model continuously.

4. Discussion

As we have seen from the results of the experiment, sensor-generated data 
requires preprocessing. We have shown that even without compression, we can 
save 95% of the data payload. We can use a sum of the PIR sensors states instead 
of individual states to show a specifi c movement. In addition, we have seen that 
piezoelectric sensor data does not require full information. From this, we can infer 
that even if we use lossy compression, we can still detect the events. The sensor 
data does not carry personally identifi able information. However, in the situation 
where data is directly uploaded to the cloud care receivers might be identifi ed by 
the origin, like their source IP address [15]. Edge nodes with suffi cient storage 
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capacity might keep the data and periodically send in chunks to the cloud. New 
ML models can be run against old data, and if the fi tting of data has a signifi cant 
offset from previous runs, the e-health gateway will upload previously kept data 
to the cloud.

Nevertheless, if no such benefi t were detected, the data would not be sent, 
therefore protecting user privacy when no more signifi cant benefi t is estimated. 
As some lower-powered microcontrollers do not possess processing power to 
use encryption protocols such as TLS, this would be offl oaded to the e-health 
gateway. In our experiments, the sensors were connected to Arduino boards that 
are not capable of TLS even with the network shield. Since the edge nodes will 
have a copy of the latest obtained ML models, they will be able to evaluate and 
react even in the absence of cloud connectivity.

5. Conclusio  n and Future Work  

As personal health become a more pervasive part of daily life, and as the data 
generated by it increases in volume, Fog computing offers a solution for many 
critical issues. In this paper, we have shown the applicability of fog computing 
and its ability trough preprocessing to accomplish computational and bandwidth 
savings, and to protect care receivers’ privacy.

The added fl exibility of the fog architecture enables better placement of 
computing and network resources. Smarter data fl ow could protect personal data; 
bandwidth cost could be reduced, and the whole system can be more scalable, 
and secure.

In the future, we will add additional noninvasive sensors and body sensors 
such as pulse oximeter and/or ECG for reference and machine learning model 
training. We will also conduct experiments in parallel with multiple individuals 
and analyze the privacy implications when data is anonymized to investigate the 
possibility of identifying the patient from medical data. This extraction of data 
according to healthcare established standards is important and have to be taken 
into consideration [16].
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