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ABSTRACT 

Load forecast is an important factor for operational and development planning of power system. 

Factors that play key role in forecasting power load consumption are the air temperature, type 

of the day (weekday, weekend or holiday), geographical differences, people standard, gross 

domestic product, demographic information, energy efficiency etc. The air temperature is one 

of the factors, which has significant impact on electricity consumption and power system load. 

This paper analyses the correlation between the power system load and the air temperature in 

Republic of North Macedonia. Furthermore, forecasting of the power system load is 

investigated. The power system load forecast is performed by applying k-nearest neighbour 

machine learning model. The power load depends on two variables – air temperature and date. 

Results show that for power load forecasts, k-nearest neighbour regression outperforms 

polynomial and sinuses regressions. 
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INTRODUCTION 

Power system load forecast is an important factor for operational and development planning of 

power system and future electrical energy consumption. Good forecast leads to significant 

savings in operating and maintenance costs and increased reliability of the electricity supply 

system. Factors that play key role in forecasting power load consumption are the air 

temperature, type of the day (weekday, weekend or holiday), geographical differences, people 

standard, gross domestic product, demographic information, energy efficiency, etc. This means 

that load forecasting is a complex multi-variable estimation problem where forecasting methods 

such as curve fitting using numerical methods do not provide accurate results, while at the same 

time some machine learning models perform better.  

 

Air temperature is one of the factors, which has significant impact on electricity consumption 

and power system load. Air temperature impact on system load is especially important from the 

power system operational management aspects on short run. This fact is evident in power 

system of Republic of North Macedonia due to high variations of consumption and load in year 

seasons.  
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The annual number of scientific papers on load forecasting has increased from around a hundred 

in 1995 to more than a thousand in recent years. Accordingly, it is hard to make a thorough 

state of the art, and here only some of the papers are mentioned. There is a number of techniques 

which have been used for load forecast, such as: single or multiple linear or nonlinear 

regressions, stochastic time series, exponential smoothing, state space and Kalman filter, 

knowledge based approach, neural networks, wavelet transformations, semi parametric additive 

model, fuzzy logic etc. The first generation of the load forecast methods (also called analytical 

methods) includes time series analysis, regression methods [1-3], similar day method, Wavelet 

Transform [4-5], etc. Artificial intelligence methods, also known as the second generation of 

the load forecast methods, mainly comprises artificial neural networks (ANN) [6-8], including 

deep neural networks [9-10], random forests, gradient boosting [11], fuzzy logic [12]. The 

second generation compared with the first one has gained importance due to errors reduction. 

Some combination of methods (known as hybrid methods) that belong to the both generations 

is also possible [13-14]. Authors in [15] have concluded that all the previous methods appear 

to have at least one of the following three limitations:  

• they might only work for a subset of days (i.e. load forecast is performed only for a 

given class of days, e.g., working days);  

• simulation results are given for a small window of time (e.g., a couple of months);  

• experiments are conducted on a single set of data, which might make a reader wonder 

whether the proposed methodology depends on the specific data-set, or can be actually 

adopted to predict the load in other countries as well. 

 

This paper analyses the correlation between the power system load and the air temperature in 

Republic of North Macedonia. Furthermore, forecasting of the power system load consumption 

is investigated. The power system load forecast is performed by applying k-nearest neighbour 

(KNN) machine learning model, which is for the first time applied on real data of North 

Macedonia power system and the results are compared with polynomial and sinuses 

regressions. The implementation of the k-nearest neighbour machine-learning model is 

performed by using two independent variables: air temperature and date. It means the algorithm 

searches for/calculates suitable power load candidates around a certain period and temperature. 

The hourly data (8760 per year) for the temperatures and load are used for the years 2014-2018 

as a training dataset, while 2019 (temperatures and load) data are used as a test dataset. The 

effectiveness of the model is evaluated and confirmed by cross-validation.  

 

The proposed methodology tries to overcome some of the previous methods limitations 

mentioned, above. Namely, methodology works with all types of days and simulation results 

are given for a large window of time. Another contribution of the paper is comparative analysis 

between k-nearest neighbour regression and polynomial and sinuses regressions. The results 

show that for power load forecasts the proposed algorithm outperforms polynomial and sinuses 

regressions. 

 

METHODS  

Efficient and precise forecasts of energy requirements of a system are important for making 

decisions including decisions on purchasing and generating electric power, load switching and 

infrastructure development. The power load forecasting relies on historical data to determine how 

much power customers may need. Forecasting model inputs can include day of the week, holiday 

calendars, weather conditions and forecasts, geographical differences, demographic information, 

etc. Accurate models for electric power load forecasting are essential to the operation and planning 

of a utility company [16]. 
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K-nearest neighbour machine learning model [17] is considered for power system load forecast. 

The power load is selected as a dependent variable that depends on two independent variables – 

average air temperature and date. This means the algorithm will search for suitable k power load 

candidates around a certain period and temperature. After defining the training dataset 

(temperatures, dates and power load for the years 2014-2018), the model is tuned by setting an 

appropriate parameter for the number of neighbours k, and then it is trained on the training dataset. 

 

The effectiveness of the model is evaluated by 10-fold and Leave-one-out cross-validations. Cross-

validation is a method for getting a reliable estimate of model performance using only training 

data. To predict the performance of a model on a new dataset, it is needed to assess its performance 

on a dataset that plays no part in the formation of the model – the test dataset. By comparing the 

test performance and training performance, overfitting can be avoided. If the model performs well 

on the training data, but poorly on the test data, then it is overfitted. The performance can be 

measured in various ways, and one way is through the root-mean-squared error: 

 

 𝑟𝑚𝑠𝑒 = √
∑ (𝑝𝑖−𝑎𝑖)

2𝑛
𝑖=1

𝑛
, (1) 

 

where pi and ai are the predicted and actual values, respectively, while n is the total number of the 

test instances.  

 

All the phases of the machine learning model are illustrated in Fig. 1. 

 

Selecting the 

independent and 

dependendent 

variables

Defining the 

training and 

testing dataset

Tuning the model

Evaluating the 

model by 10-fold 

and leave-one-out 

cross-validations

 

Fig. 1 Phases of the defined machine learning model. 

Dataset overview and basic analysis 

In this paper, a case study dataset consists of hourly power system load data (8760 per year) for 

Republic of N. Macedonia for the calendar years 2014-2019 [18, 19] and the corresponding 

meteorological information about minimal, average and maximal air temperatures obtained from 

the internet [20] (Figure 2). An analysis of the power load data shows that it depends on the period 

of the year, day of the week and hour of the day and there is a high variation between hourly loads 

in the power system on year basis. 

 

Figure 3 depicts a daily diagram of power system of Republic of N. Macedonia for the day Jan 08, 

2014. Three typical points (minimal power system load Pmin=836MW, average power system 

load Pavg=1100MW, maximal power system load Pmax=1293MW) are marked on the diagram 

and they are used in the analysis from each daily diagram. An average load is average of all 24-

hourly loads on a daily diagram. In [21] and [22] regression analyses were performed over the 

dataset of power loads and air temperatures in order to estimate dependence curves of these three 

typical loads (Pmin, Pavg, Pmax) from the independent variable – the average temperature Тavg 

for the years 2014 and 2015. It was shown that there is a strong negative correlation between the 

power load and the air temperature. The regression analyses examined the approximations 

parameters, determination coefficients (R2) and correlation coefficients. The determination 

coefficient shows the proportion of the variance in the dependent variable that is predictable from 
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the independent variable (it ranges from 0 to 1, the coefficient 0 means the dependent variable 

cannot be predicted from the independent variable, while 1 means the dependent variable can be 

predicted without error from the independent variable) [23]. According to [21] and [22], the 

determination coefficients for polynomial regression and sinuses regression of the maximum, 

average and minimum daily load due to the average daily temperature are very high, which means 

that the regression analysis shows high prediction degree of the daily typical loads from the air 

temperature. 

 

 
 

Figure 2. Load duration curve for years 

2014−2018 for power system of Republic of 

North Macedonia.  

Figure 3. Daily load diagram for Jan. 08, 

2014 and typical load points.

 

The correlation coefficient is a statistical measure that calculates the strength of the relationship 

between two variables [23]. Coefficients of correlation can have values in range from −1 (negative 

relation) to +1 (positive relation). There is not a significant relation if the correlation coefficient is 

less than 0.3. The correlation is with practical importance when the correlation coefficient is 

between 0.5 and 0.7. Correlation coefficient between 0.7 and 0.9 shows close correlation, while 

correlation coefficient greater than 0.9 shows very close correlation. According to [21] and [22] 

the correlation coefficients for polynomial regression and sinuses regressions have values in a 

range between −0.90 to −0.95 what implies very close negative relation between all the 

combinations of typical daily loads and air temperatures.  

 

RESULTS AND DISCUSION  

Presented methodology is used for investigation the correlation between the power system load 

and the air temperature in Republic of North Macedonia. In this case study, the temperatures, 

dates and power load for the years 2014-2018 are used as a training dataset. Figure 4 and Figure 5 

illustrate the distributions of the average air temperatures and the average power load for the years 

2014-2018 through 365 days, respectively. In these graphics, the number 1 in the apsis means the 

date Jan. 01, the number 32 is used for the date Feb. 01, etc. The blue circles in Figure 4 denote 

the temperatures in the period 2014-2018, while the red stars denote the temperatures in the 

forecast period Mar. 01-21, 2019, which was analysed in [21] and [22]. The blue circles in Figure 5 

denote the real average power load in the period 2014-2018, while the red stars denote the real 

average power load in the forecast period Mar. 01-21, 2019. 
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Figure 4. Distribution of average air temperatures for the years 2014-2019:  

a) period 365 days, b) period Mar. 01-21, 2014-2019. 

 

 
 

Figure 5. Distribution of average power load for the years 2014-2019:  

a) period 365 days, b) period Mar. 01-21, 2014-2019. 

 

According to the above methodology the average power system load for the year of 2019 is 

forecasted on the basis of the defined training dataset. KNN machine learning model is used over 

the two independent variables, average air temperature and date. The experiments for this case 

study show that a suitable number of neighbours in the model, which distance is measured by 

Euclidean distance function as a commonly used distance metric, is 30. The minimum and the 

maximum of the variable average air temperature data are −15 and +30(C), respectively, while the 

minimum and maximum of the variable date are 1 and 365 (the first and the last day in a year), 

respectively. Variables measured at different scales do not contribute equally to an analysis and 

this might end up creating a bias. The variable date (due to the larger range) will outweigh the 

variable air temperature, i.e. the variable date will have a bigger weight in an analysis compared 

to the variable air temperature. This means the date will have higher influence on the calculated 

distance than the air temperature will do. Transforming the data to comparable scales can prevent 

this problem. Normalization is a way of standardizing a set of numbers so each one is between 0 

and 1. Hence, both the variables in this model are normalized in the range [0−1]. 
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The root-mean-squared errors when 10-fold cross-validation and Leave-one-out cross-validation 

are used for the KNN model with 30 neighbours over the 2014−2018 dataset are given in Table 1. 

These results show that the errors are smaller when the variables are normalized.  

 

Table 1. Performance of the model measured on the training dataset (MW) 

 

Cross-validation normalized variables non-normalized variables 

10-fold 62.2467 66.4218 

Leave-one-out 65.8212 62.2133  

 

In this case study, the following two periods are analysed, and corresponding power load is 

forecasted: 1) the period of Mar. 01−21, 2019 and 2) the period of the year 2019 (365 days). The 

forecasted average power loads for these periods are compared to the corresponding real average 

-power loads and the root-squared-mean errors are given in Table 2. 

 

Table 2. Comparison of root-mean-squared errors of different models (MW) 

 

Period 

k-nearest neighbour regression polynomial and sinuses regressions [21-22] 

normalized 

variables 

non-normalized 

variables 

polynomial 

order 4 

sinuses order 

4 

sinuses order 

4 + wavelet 

transform 

Mar.1-21,19 32.339 39.166 161.086 162.885 152.627 

Year 2019 50.623 51.744  − − − 

 

These results show that for power load forecasts, k-nearest neighbour regression outperforms 

polynomial and sinuses regressions. The graphics in Figure 6 depict comparison of forecasts of 

average power load with and without of normalization of variables (30 neighbours used) against 

real average power load for the period Mar. 01−21, 2019 (Fig. 6a) and for year 2019 (Fig. 6b). The 

graphics show that forecasts obtained with normalized variables are very close to the real average 

power load.  

 
 

Figure 6. Comparison of: a) power load KNN forecast without normalized variables, power load 

KNN forecast with normalized variables, real average power load for the period Mar. 01−21, 

2019, b) power load KNN forecast with normalized variables, real average power load for 2019. 
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CONCLUSION 

This paper is the first one using k-nearest neighbour machine-learning model for investigation 

the forecast of power system load in correlation with air temperature and date on real data of 

power system of Republic of North Macedonia. On the basis of statistical analysis, it can be 

noticed that there is a close time matching in appearance of power system maximum load and 

minimum air temperature. The same time matching is noticed between power system summer 

maximum load and registered maximum temperature in analysed years. Also it has to be 

emphasized that in North Macedonia electricity is widely used for heating of residential and 

commercial buildings and houses. This fact explains the very close correlation between power 

system load and air temperature in North Macedonia power system. 

 

The presented results show that for power load forecasts the proposed algorithm outperforms 

polynomial and sinuses regressions. The effectiveness of the model is evaluated by 10-fold cross-

validation and Leave-one-out cross-validation. Methodology works with all types of days and 

simulation results are given for a large window of time. 
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