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Abstract — In this paper we present our approach on
pre-processing chest region dynamic NM images.
It enables anatomical data extraction of the vena
cava and the heart. The aim of the method is
developing sophisticated diagnostic software that
could automatically offer the optimal positions and
the shapes of the regions of interest needed for
heart studies.
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1. INTRODUCTION

Nuclear Medicine (NM) images are diagnostic digital
images, which provide both anatomical and functional
information. They present the projection of the
distribution of radioisotope(s) in a body of a patient
after injection of adequate dose of radioisotope(s). The
raw NM images are created by accumulating the
emitted gamma rays from a patient over a fixed
observation period by computerized gamma cameras.
They have a low signal-to-noise ratio (SNR) due to the
nature of the gamma ray emission process and the
operational characteristics of the gamma cameras (low
count levels, scatter, attenuation, and electronic noises
in the detector/camera). The noise obeys a Poisson law
and is highly dependent on the space distribution of the
image signal intensity. Therefore, a suitable image pre-
processing must precede the NM images analysis in
order to provide an accurate recognition of the
anatomical data of the patient (the boundaries of the
various objects — organs). This process of separating
signal from noise is a rather difficult and much
diversified task that should be adjusted to the organs
and tissues, which physiology is to be investigated.

In [1], [2], [3], [4] and [5] we proposed several
approaches to cope with this problem. In [1] the whole

process of spreading of the radionuclide is divided in
three successive phases and the images that belong to
one specific phase are processed separately from the
others. The processing includes changing images
resolution and applying autocorrelation technique. In
[2] the images are filtered by applying the wavelet
shrinkage program, where the set threshold is same for
all the wavelet coefficients in one level. In [3] the
images’ denoising is carried out by modifying images
histogram. In [4] we try to denoise images by filtering
in the direction that is normal to the radionuclide
spreading direction. In [5] we combine DWT realized
via QMF filters with a specific strategy for selecting an
appropriate threshold. Due to the signal-dependence of
the Poisson noise, the Anscombe variance-stabilizing
transformation is applied.

This paper presents a new approach on pre-processing
of NM heart-region images. The images are processed
in the discrete wavelet transform domain with linear
phase QMF filters. The filters are designed to achieve
both good image decomposition and near perfect
reconstruction. Information from adjacent images is
used while filtering particular image.

The paper is organized as follows. In Section II the
NM images creation process is modelled, and the
problems due which raw NM images should be pre-
processed, are formulated. The wavelet theory and
wavelet-domain filtering are reviewed in Section 3. In
Section 4 we propose a suitable chest-region NM
images filtration technique where we wuse the
information from neighbourhood images. The
performance of the approach is demonstrated on real
NM images in Section 5, while the conclusion is given
in Section 6.



Fig. 1 Sequence of enhanced noised images (t=0.4 s)

2. NMIMAGE CREATION PROCESS

The process of generating the NM images starts after
injection of certain, small dose (for safety reasons) of
suitably chosen radioactive material, into the body of a
patient. The radionuclide spreads and mixes with the
blood on its way to the heart through the vena cava
superior. This results with some very complicated, fast
changing function, po(x,y,z,t). After passing through
the heart, the blood-radioactivity mixture passes
through the lungs, returns to the heart and proceeds
with spreading toward each cell of the patient body
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through its arteries. This process could be recorded as
a set of N, NM images (Fig. 1). Each image contains
rather high level of noise caused by: a) mixing the
radionuclide with the blood and the spreading of this
mixture, b) hydrodynamic processes in the blood
vessels caused by the pumping work of the heart, and
¢) by the randomness of the gamma rays emission and
their detection by the gamma camera. Considering this,
the raw images should be adequately pre-processed in
order to extract the anatomy information about the
position of the vena cava superior and the heart.
According to this information, the optimal position
(and the shape) of the regions of interest (ROI’s) for
the heart study could be proposed [7].

3. AN OVERVIEW OF THE DISCRETE WAVELET
TRANSFORM

The Discrete Wavelet Transform (DWT) decomposes
a signal into a set of orthogonal components describing
the signal variation across the scale [7]. The
orthogonal components are generated by dilations and
translations of a prototype function ¥ called mother
wavelet.
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The above equation shows that the mother function is
dilated by the integer i and translated by the integer £.
In analogy with other function expansions, a function f
may be written for each discrete coordinate 7 as sum of
a wavelet expansion up to certain scale J plus a
residual term, that is:
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Fig. 2. Discrete Wavelet Transform Tree



iterative decomposition algorithm, which uses two
complementary filters &, (low-pass) and /; (high-pass).
Since the wavelet base is orthogonal, 4, and 4, satisfies
the quadrature mirror filter conditions (QMF) [12].
Filter bank theory is closely related to wavelet
decompositions and multiresolution concepts. For this
reason, it is helpful at this point to view the scaling
function ¢ as a low pass filter 4, and the wavelet
function ¥ as a high pass filter ;. The mother and
scaling functions are defined as follows [8]:

w(t)="2"2 hy(2t—n) 3)

#(t) = 2" hyp(2t —n) “4)

For computation of wavelet transform, the following
pyramidal algorithm is wused: The QMF bank
decomposes the signal into low and high frequency
components respectively. Convolving the signal with
hy gives a set of wavelet coefficients c,;, while the
convolution with A, gives the approximation
coefficients d;x. Because of the redundancy of
information, these filters are down-sampled, throwing
away every other sample at each operation, thus
halving the data each time. The approximation
coefficients d;; are then convolved again with the
filters hy and h; to form the next level of
decomposition. The backward algorithm simply
inverts the process. It combines two linear filters with
up-sampling operation. Fig. 2 shows the operation
involved in the wavelet decomposition and synthesis
of the signal.

At present, there exist no theoretical results that can
predict which wavelet is suitable for a particular type
of signal. Usually, the best wavelet is chosen by
comparing the performances of several types of
wavelets.

Wavelet Shrinkage

The most popular form of wavelet-based filtering is
commonly known as Wavelet Shrinkage. The basic
wavelet shrinkage algorithm involves computing of the
discrete wavelet transform of the observation y (w =
DWT(y)). The contribution of a particular wavelet
basis function in the signal expansion can be filtered
by weighting the corresponding coefficient w; by a
number 0 < /; < 1. That is, the wavelet coefficients are
modified according to:

w, = w; - h; (5)

In the wavelet shrinkage program, the shrinkage filter
corresponds to either the “hard threshold” nonlinearity

h.(hard) _ 1’ if |Wl| >7 (6)
i 0, if |wl.| <7

or the “soft threshold” nonlinearity
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with 7a user-specified threshold level.

Finally, the signal is reconstructed (estimated) by
computing the inverse wavelet transform from the

processed data: J} =IDWT(w).

4. FILTRATION OF DYNAMIC NM IMAGES

The heart region images contain quantum noise that
obeys Poisson law and is highly dependent on the
underlying light intensity pattern being imaged [9]. For
denoising purposes, it is often advantageous instead of
working in the spatial (pixel) domain to work in a
transform domain. One possible choice for images
transform is the discrete wavelet transform (DWT)
domain. The DWT tends to concentrate the energy of a
signal into a small number of coefficients, while a
large number of coefficients have low SNR.

Motivated by the DWT tendency to produce
coefficients with a high and low SNR, we apply the
soft thresholding from the wavelet shrinkage program.

Moreover, the wavelet shrinkage program implies
discarding some of the wavelet coefficients, so the
signal perfect reconstruction is not possible. Hence, we
propose to give up the perfect reconstruction at the
very beginning. It means instead to use wavelet filters,
to decompose the data using a filter bank with filters
that have better characteristics. At the same time, we
design the QMF bank to achieve near perfect
reconstruction (NPR). One possible choice to design a
QMF NPR bank is to use the algorithm proposed in
[10].

Since the dynamic images are consecutive, it can be
expected that each image contains information that can
be used for filtering of its adjacent images. In order to
use this information we form MxN vectors by joining
all the pixels from all the images that are located at
same position, where MxN is the resolution of the
images (Fig. 3-a). The vectors have length K, where K
is the total number of images in the images set. One
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Fig. 3 a) Set of NM images; b) Expected shape of a
vector created by joining the pixels from all the images
that are located at same position

can expect that when images do not contain noise the
created vectors should form a shape similar to that
given in Fig. 3-b. However, the vectors obtained from
real NM images form a shape given in Fig 4. The
isolated peaks in Fig. 4 are result of the noise presence
in the images. In order to eliminate these peaks we
propose to do wavelet filtering to all of these vectors.

Eventually, we summarize the algorithm for denoising
chest region images as follows:
- apply autocorrelation technique to each image
separately [1];
- compute 2D DWT of each image using a QMF
NPR bank;
- apply the standard soft-thresholding to the
wavelet coefficients of each image;
- compute inverse DWT using modified wavelet
coefficients;
- create vectors by joining the pixels from all the
images that are located at same position;
- compute 1D DWT of each vector at level 1;
- compute inverse DWT wusing only the
approximation coefficients;
- form images from the modified vectors;
- form the resultant image from the filtrated
images.
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Fig. 4 Vectors created from the pixels at same position
in the raw NM images

5. EXPERIMENTAL RESULTS

In this Section, we illustrate the effects of applying our
method and compare these effects with the results
obtained by using the conventional approach. Both
methods were applied on a same subset of 24
sequential dynamic NM images (Fig. 1), recorded with
resolution 128x128 and accumulation time 1=0.4 [s].

To design suitable QMF NPR bank needed for
computing 2D DWT we used the algorithm described
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Fig. 5 a) Magnitude responses of the decomposing filters,

b) Magnitude response of the QMF NPR bank

Table 1 Filter coefficients of QMF bank filters

0.002722 -0.002856 -0.003194 0.007698
ho[0-15] = 0.002690 -0.015823 0.000046 0.027907
hy[31-16] -0.007397 -0.046104 0.023106 0.075651
-0.058667 -0.140412 0.184563 0.657174
0.002722 0.002856 -0.003194 -0.007698
h,[0-15]= 0.002690 0.015823 0.000046 -0.027907
—h,[31-16] | -0.007397 0.046104 0.023106 -0.075651
-0.058667 0.140412 -0.184563 -0.657174
0.002722 -0.002856 -0.003194 0.007698
fo[0-15] = 0.002690 -0.015823 0.000046 0.027907
fo[31-16] -0.007397 -0.046104 0.023106 0.075651
-0.058667 -0.140412 0.184563 0.657174
-0.002722 -0.002856 0.003194 0.007698
fi[0-15] = -0.002690 -0.015823 -0.000046 0.027907
—f1[31-16] 0.007397 -0.046104 -0.023106 0.075651
0.058667 -0.140412 -0.184563 0.657174

in [10]. The designed QMF bank has overall
reconstruction error minimized in the minimax sense;
the corresponding QMF filters have least-squares
stopband error. The filters have linear phase, zero at 7,
good passband and narrow transition band. The
decomposition filters magnitude response and the
prototype filter coefficients are given in Fig. 5 and
Table 1, respectively.

The effect of use of 1D wavelet filtering to the vectors
created by joining the pixels located at a same position
in raw NM images is shown in Fig. 6. In order effect to
be easily noticed, Fig. 6 illustrates the effect of 1D
wavelet filtering to raw NM images, not to images
firstly filtered with autocorrelation technique and 2D
wavelet filtering. In view of the used filters, we
decomposed the vectors by using the wavelet db3 and
reconstructed them by using the same wavelet only
from the approximation coefficients at level 1. It can
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Fig. 6 The effect of using wavelet filtering with db3 to
the 1D vectors created from raw NM images

be noticed from Fig. 6 that after processing there is no
abrupt changes in the peaks.

The final effect of the proposed method is presented in
Fig. 7-a, while the effect of the conventional approach
is presented in Fig. 7-b. In the resultant image
(Fig. 7-a) the shadow (pixels with low intensity) is
removed. This image has sharp edges of the vein and
the heart, while the image in Fig. 7-b contains
relatively high level of noise that blurs the edges of
these objects. Therefore, the image in Fig. 7-a is more
suitable for an upgrading expert system that could
provide automatic identification of optimal shapes and



Fig. 7 The vena and the heart a) proposed approach b) conventional approach c) lowpass filtering of the image in b)

positions of regions of interest needed for further
physiological diagnostics.

The quality of the image in Fig. 7-b could be further
improved by wusing certain low pass filtering
techniques as shown in Fig. 7-c, but the projections of
the vein and the heart would still suffer from certain
deformations. These deformations could degrade the
effects of an expert system for automatic identification
of the optimal positions and shapes of regions of
interest needed for further investigations.

6. CONCLUSION

We present an approach on pre-processing chest region
dynamical NM images. The aim of this approach is to
determine anatomical data in order to upgrade the
software with an expert system that could identify the
optimal positions and the shapes of the regions of
interest needed for the heart study. We demonstrate the
performance of the proposed method on real
dynamical NM images, recorded and processed by our
own upgraded gamma camera system developed at the
department of NM in Bitola.
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