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Abstract – In the paper we present our approach on pre-
processing of NM heart-region images. The proposed method 
combines Discrete Wavelet Transform realized via near perfect 
reconstruction QMF bank with a specific strategy for selecting 
an appropriate threshold. The performance of the proposed 
method is demonstrated on real NM images. 

 
Keywords – Nuclear medicine image, wavelets, thresholding, 

QMF. 

I. INTRODUCTION 

Nuclear Medicine (NM) images are diagnostic digital 
images, which provide both anatomical and functional 
information. They present the projection of the distribution of 
radioisotope(s) in a body of a patient after injection of 
adequate dose of radioisotope(s). The raw NM images are 
created by accumulating the emitted gamma rays from a 
patient over a fixed observation period by computerized 
gamma cameras. They have a low signal-to-noise ratio (SNR) 
due to the nature of the gamma ray emission process and the 
operational characteristics of the gamma cameras (low count 
levels, scatter, attenuation, and electronic noises in the 
detector/camera). The noise obeys a Poisson law and is highly 
dependent on the space distribution of the image signal 
intensity. Therefore, a suitable image pre-processing must 
precede the NM images analysis in order to provide an 
accurate recognition of the anatomical data of the patient (the 
boundaries of the various objects – organs). This process of 
separating signal from noise is a rather difficult and much 
diversified task that should be adjusted to the organs and 
tissues, which physiology is to be investigated.   

In [7], [8], [9] and [10] we proposed several approaches to 
cope with this problem. In [7], the whole process of spreading 
the radionuclide is divided in three successive phases and the 
images that belong to one specific phase are processed 
separate from the others. In addition, the image resolution is 
changed and autocorrelation technique is applied. In [8], the 
images are filtered by utilizing the wavelet shrinkage 
program, where the threshold is set to be same for all the 
wavelet coefficients in one level. In [9] the images processing 
is carried out by modifying images histogram. In [10] the 
denoising is tried by filtering the images in the direction that 
is normal to the spreading of the radionuclide.  

In [5] a new method for designing optimal wavelet-domain 
filters for noise removal in photon imagery is proposed. The 
threshold adapts to the local noise level of the spatially 

varying Poisson process underlying the image and is different 
for every wavelet coefficient. 

This paper presents a new approach on pre-processing of 
NM heart-region images. The images are processed in the 
discrete wavelet transform domain with linear phase QMF 
filters. The filters are designed to achieve both good image 
decomposition and near perfect reconstruction. The threshold 
in the wavelet shrinkage program is selected as proposed in 
[5].  

The paper is organized as follows. In Section II the NM 
images creation process is modelled, and the problems due 
which raw NM images should be pre-processed, are 
formulated. Section III outlines the scheme used in wavelet 
filtering of NM images. Section IV presents suitable NM 
images filtration technique. The performance of the proposed 
method is demonstrated on real NM images in Section V. 
Conclusion is given in Section VI. 

II. NM IMAGES CREATION PROCESS 

The process of generating the NM images starts after 
injection of certain, small dose (for safety reasons) of suitably 
chosen radioactive material, into the body of a patient. The 
radionuclide spreads and mixes with the blood on its way to 
the heart through the vena cava superior. This results with 
some very complicated, fast changing function, ),,,( tzyxρ . 
After passing through the heart, the blood-radioactivity 
mixture passes through the lungs, returns to the heart and 
proceeds with spreading toward each cell of the patient body 
through its arteries. This process could be recorded as a set of 
N, NM images (Fig. 1). Each image contains rather high level 
of noise caused by: a) mixing the radionuclide with the blood 
and the spreading of this mixture, b) hydrodynamic processes 
in the blood vessels caused by the pumping work of the heart, 
and c) by the randomness of the gamma rays emission and 
their detection by the gamma camera. Considering this, the 
raw images should be adequately preprocessed in order to 
extract the anatomy information about the position of the vena 
cava superior and the heart. According to this information, the 
optimal position (and the shape) of the regions of interest 
(ROI’s) for the heart study could be proposed [1]. 

III. AN OVERVIEW OF THE DISCRETE WAVELET 
TRANSFORM 

The Discrete Wavelet Transform (DWT) decomposes a 
signal into a set of orthogonal components describing the 
signal variation across the scale [2]. The orthogonal 
components are generated by dilations and translations of a 
prototype function ψ called mother wavelet: 

1Cvetko D. Mitrovski is with the Faculty of Technical Sciences, 
I.L.Ribar bb, 7000 Bitola, Macedonia, E-mail: 
cvetko.mitrovski@uklo.edu.mk  

2Mitko B. Kostov is with the Faculty of Technical Sciences, 
I.L.Ribar bb, 7000 Bitola, Macedonia, E-mail: 
mitko.kostov@uklo.edu.mk 



 Zikktt ii
ki ∈−= − ,),2/(2)( 2/

, ψψ  (1) 

The above equation shows that the mother function is 
dilated by the integer i and translated by the integer k. In 
analogy with other function expansions, a function f may be 
written for each discrete coordinate t as a sum of a wavelet 
expansion up to certain scale J plus a residual term, that is: 
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The estimation of coefficients djk and cJk is carried out 
through an iterative decomposition algorithm, which uses two 
complementary filters h0 (low-pass) and h1 (high-pass). Since 
the wavelet base is orthogonal, h0 and h1 satisfies the 
quadrature mirror filter conditions (QMF) [3]. The filter bank 
theory is closely related to wavelet decompositions and 
multiresolution concepts. For this reason, it is helpful at this 
point to view the scaling function φ as a low pass filter h0 and 
wavelet function ψ as a high pass filter h1. The mother and 
scaling functions are defined as follows [2]: 
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For computation of wavelet transform, the following 
pyramidal algorithm is used:  

The QMF bank decomposes the signal into low and high 
frequency components respectively. Convolving the signal 
with h1 gives a set of wavelet coefficients cJ,k, while the 
convolution with h0 gives the approximation coefficients dj,k. 
Because of the redundancy of information, these filters are 
down-sampled, throwing away every other sample at each 
operation, thus halving the data each time. The approximation 
coefficients dj,k are then convolved again with the filters h0 
and h1 to form the next level of decomposition. The backward 
algorithm simply inverts the process. It combines two linear 
filters with up-sampling operation. Fig. 1 shows the operation 
involved in the wavelet decomposition and synthesis of the 
signal. 

At present, there exist no theoretical results that can predict 
which wavelet is suitable for a particular type of signal. 
Usually, the best wavelet is chosen by comparing the 
performances of several types of wavelets.  

Wavelet Shrinkage 
The most popular form of wavelet-based filtering is 

commonly known as Wavelet Shrinkage. The basic wavelet 
shrinkage algorithm involves computing of the discrete 
wavelet transform of the observation y (w = DWT(y)). The 
contribution of a particular wavelet basis function in the signal 
expansion can be filtered by weighting the corresponding 
coefficient wi by a number 0 ≤ hi ≤ 1. That is, the wavelet 
coefficients are modified according to: 

 iŵ  = wi ⋅ hi (5) 

In the wavelet shrinkage program, the shrinkage filter 
corresponds to either the “hard threshold” nonlinearity 
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or the “soft threshold” nonlinearity 
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Fig. 2. Discrete Wavelet Transform Tree 
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with τ a user-specified threshold level.  
Finally, the signal is reconstructed (estimated) by 

computing the inverse wavelet transform from the processed 

data: f̂  = IDWT( ŵ ). 

IV. FILTRATION OF NM IMAGES 

The heart region images contain quantum noise, which 
obeys a Poisson law and is highly dependent on the 
underlying light intensity pattern being imaged [5]. For 
denoising purposes, it is often advantageous instead of 
working in the spatial (pixel) domain to work in a transform 
domain. One possible choice for images transform is the 
discrete wavelet transform (DWT) domain. The DWT tends to 
concentrate the energy of a signal into a small number of 
coefficients, while a large number of coefficients have low 
SNR.  

Motivated by the DWT tendency to produce coefficients 
with a high and low SNR, we apply the soft thresholding from 
the wavelet shrinkage program. But, if the noise was additive 
white Gaussian, the noise level would be uniform throughout 
the image and hence uniform across all the wavelet 
coefficients. Therefore, in a case when a signal contains 
additive white Gaussian noise a simple global noise threshold 
could be determined independently on the signal [4]. 
Unfortunately, the Poisson noise is signal-dependent and 
therefore wavelet-domain filtering based on a global threshold 
is inappropriate. Hence, for denoising this type of images we 
use the wavelet filter described in [5]: 
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with 

 I = (i,j,m,n) 

an abstract index for the four indices of the 2-d wavelets basis 
),(,,, lknmjiψ  and 
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an unbiased estimate of the noise power in the I-th wavelet 
coefficient, and 

 222 ˆˆ
III σωθ −=  

an unbiased estimate of the signal power in the I-th wavelet 
coefficient, and (⋅)+ denoting the positive part (negative values 
set to zero). 

In addition, due to the wavelet shrinkage program, some of 
the wavelet coefficients are discarded, so the perfect 
reconstruction is not possible. Hence, we propose to give up 
the perfect reconstruction at the very beginning. It means 
instead of using wavelet filters, to decompose the data using a 
filter bank with filters that have better characteristics. At the 
same time the QMF bank should be designed to achieve near 
perfect reconstruction (NPR). One possible choice for 
designing QMF NPR bank is using the algorithm in [6]. 

The algorithm for denoising chest region images can be 
summarized as following: 

- apply the autocorrelation technique to the dynamical 
images [7]; 

- create a resultant image from the images obtained in 
the previous step;  

- compute DWT of the image using a QMF NPR bank; 
- compute the wavelet filter given with Eq. (8); 
- apply the standard soft-thresholding;  
- compute the inverse DWT by using modified wavelet 

coefficients.  

V. EXPERIMENTAL RESULTS 

We use a set of real NM image matrices of resolution 
128x128 shown in Fig. 1. Autocorrelation technique [7] is 
applied to remove the salt and paper noise from the images. 

To design a suitable QMF bank we use the algorithm 
described in [6]. The obtained QMF bank has overall 
reconstruction error minimized in the minimax sense; the 
corresponding QMF filters have least-squares stopband error. 
The filters have linear phase, zero at π, good passband and 
narrow transition band. The decomposition filters magnitude 
response and the prototype filter coefficients are given in Fig. 
3 and Table 1, respectively.  
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Fig. 3   a) Magnitude responses of the decomposing filters, b) Magnitude response of the QMF NPR bank 



After applying the algorithm given in Section 4, we remove 
the shadow (pixels with low intensity) in the resultant image. 
Fig. 4 shows the resultant image without the shadow and the 
resultant image obtained by the conventional way of 
extracting anatomic information i.e. summing a number of 
sequential raw images. The image in Fig. 4-a) has sharp edges 
of the vein and the heart, while the image in Fig. 4-b) contains 
relatively high level of noise that blurs the edges of these 
objects. Therefore, the image in Fig. 4-a) is more suitable for 
an upgrading expert system that could provide automatic 
identification of optimal shapes and positions of regions of 
interest needed for further physiological diagnostics.  

The quality of the image in Fig. 4-b) could be further 
improved by using certain low pass filtering techniques as 
shown in Fig. 4-c), but the projections of the vein and the 
heart would still suffer from certain deformations. These 
deformations could degrade the effects of an expert system for 
automatic identification of the optimal positions and shapes of 
regions of interest needed for further investigations. 

VI. CONCLUSION  

We present an approach on pre-processing heart region 
dynamical NM images. The aim of this approach is to 
determine anatomical data in order to upgrade the software 
with an expert system that could identify the optimal positions 
and the shapes of the regions of interest needed for the heart 
study. The images are processed in the wavelet transform-
domain using linear phase QMF NPR filters. Due to the 
signal-dependence of the Poisson noise, an alternative 
approach for selecting the threshold is used. The performance 
of the proposed method is demonstrated on real NM images.  

REFERENCES 

[1] Cvetko D. Mitrovski, “ Quantitative Determination of Left-Right 
Shunt at Heart Disease Patients” , Proceeding of papers, Faculty 
of Technical Sciences – Bitola, pp. 327-335, 1996; 

[2] G. Strang and T. Nguyen, Wavelets and Filter Banks. 
Wellesley-Cambrige Press, 1996; 

[3] D. L. Donoho, "Wavelet Thresholding and W.V.D.: A 10-
minute Tour", Int. Conf. on Wavelets and Applications, 
Toulouse, France, June 1992; 

[4] D. L. Donoho and I. M. Johnstone, "Ideal Spatial Adaptation via 
Wavelet Thresholding", Biometrika, vol. 81, pp. 425-455, 1994; 

[5] Robert D. Nowak, Richard G. Baraniuk, ” Wavelet-Domain 
Filtering for Photon Imaging Systems” , IEEE Trans. Image 
Processing, vol. 8, Iss. 5, p. 666-678, May 1999; 

[6] Sofija Bogdanova, Mitko Kostov, and Momcilo Bogdanov, 
“ Design of QMF Banks with Reduced Number of Iterations” , 
IEEE Int. Conf. on Signal Processing, Application and 
Technology, ICSPAT ’99, Orlando, USA, Nov. 1999. 

[7] Cvetko D. Mitrovski and Mitko B. Kostov, “ On the 
Preprocessing of Dynamic Nuclear Medicine Images” , 
International Scientific Conference on Information, 
Communication and Energy Systems and Technologies ICEST 
2002, Nis, Serbia and Montenegro, 2002; 

[8] Cvetko D. Mitrovski and Mitko B. Kostov, “ A Wavelet Domain 
Approach On Noise Filtration Of Nuclear Medicine Images” , 
International Scientific And Applied Science Conference 
Electronics ET’2002, Sozopol, Bulgaria, Sept. 2002; 

[9] Cvetko D. Mitrovski and Mitko B. Kostov, “ An Approach For 
Extracting The Vein And Heart Boundaries From Raw NM 
Images” , VI National Conference ETAI 2003, Ohrid, 
Macedonia, Sept. 2003; 

[10] Cvetko D. Mitrovski and Mitko B. Kostov, “ On The 
Radionuclide Movement Depended Filtering Of Nuclear 
Medicine Images” , Fourth International Conference for 
Informatics and Information Technology 2003, Molika, 
Macedonia, Dec. 2003. 

h0[0−15] = h0[31−16]  0.002722  -0.002856  -0.003194   0.007698   0.002690  -0.015823  0.000046   0.027907  -0.007397  -0.046104   
 0.023106   0.075651  -0.058667  -0.140412   0.184563   0.657174    

h1[0−15] = −h1[31−16]  0.002722   0.002856  -0.003194  -0.007698   0.002690   0.015823  0.000046  -0.027907  -0.007397   0.046104  
 0.023106  -0.075651  -0.058667   0.140412  -0.184563  -0.657174   

f0[0−15] = f0[31−16]  0.002722  -0.002856  -0.003194   0.007698   0.002690  -0.015823   0.000046   0.027907  -0.007397  -0.046104  
 0.023106   0.075651  -0.058667  -0.140412   0.184563   0.657174   

f1[0−15] = −f1[31−16] -0.002722  -0.002856   0.003194   0.007698 -0.002690  -0.015823  -0.000046   0.027907   0.007397  -0.046104 
-0.023106   0.075651   0.058667  -0.140412  -0.184563   0.657174   

Table 1   Filter coefficients of QMF bank filters 

  
Fig. 4. The vena and the heart a) proposed approach b) conventional approach c) lowpass filtering of the image in b) 


