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Abstract - This paper presents a method for signal denoising 
in the case of varying noise proportional to the local signal 
intensity. The signals are processed in a wavelet domain with 
a non-uniform threshold adjusted to the noise level. 

1. INTRODUCTION

There are many methods for noise removal from signals, 
but very few of them focus on removing varying noise that 
depends on the local intensity of the signal. This kind of 
signal-dependent noise is commonly found in nuclear 
medicine (NM) images. Until now, the offered methods 
have been based on conventional filtering in time and 
frequency domain and lately, wavelet transforms. Research 
to date in wavelet-domain filtering has focused on 
removing additive white Gaussian noise. This type of noise 
can be removed by using a global threshold or multiscale 
products of the detail coefficients [1-3], but it is 
inappropriate for signal-dependent noise. One simple fix 
would be to work with the square-root of the image, since 
this operation is variance stabilizing [1]. Another method 
for Poisson noise removal in the wavelet domain uses a 
non-uniform threshold matrix for filtering the wavelet 
coefficients calculated from the raw data [4].

In this paper we propose a novel wavelet based method 
for removal of signal-dependent noise. It generates a non-
uniform threshold adjusted to the noise level. The method 
uses standard wavelet filtering outlined in Section 2. In 
Section 3 we discuss how to estimate the varying 
threshold. In Section 4 we verify the validity of our 
approach on two deterministic signals contaminated with 
artificially added noise proportional to the signal intensity.

2. NOTION AND OTHER PRELIMINAIRES 

In series expansion of discrete-time function f using 
wavelets
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jk and jk denote wavelet and scaling function, 
respectively, the indexes j and k are for dilatation and 
translation, and aJk and djk are approximation and detail 
coefficients.

The most popular form of wavelet-based filtering, 
commonly known as wavelet shrinkage [1], weights the 
corresponding wavelet coefficient by a number 0 hjk  1: 
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where j is a user-specified threshold level. 

3. THE PROPOSED ESTIMATION 

Let y denotes a noisy signal that consists of a noise-free 
signal s and a noise n:

y = s + n. (3) 

Since the wavelet transform (WT) is a linear operation, 
the wavelet coefficients D = WT(y) satisfy: 

D = Ds + Dn, (4) 

where Ds = WT(s) and Dn = WT(n).
Since the noise is proportional to the local signal 

intensity, a threshold j for filtering of the wavelet 
coefficients at the level j should not be uniform for all the 
coefficients D(i), but it should change depending on the 
noise level. Since the wavelet approximation coefficients 
A contain the signal identity and have equal length as the 
detail coefficients, these coefficients follow the signal 
shape and can be used to obtain the desired non-uniform 
threshold . In particular, at lower decomposition scales 
the difference between the approximation coefficients and 
the signal is smaller. In addition, due to the signal-
dependency the noise coefficients |Dn| have a similar shape 
to the shape of the approximation coefficients. This 
implies that a threshold  should have some similar form, 
i.e. to be higher where the signal intensity is higher and 
vice versa. Owing to this, the approximation coefficients A
can be normalized by multiplying them with a scalar 
which will result in normalized coefficients A with equal 
energy as that of the detail coefficients D. Since the 
coefficients D and A have equal energy and at the same 
time, the coefficients D contain narrower and higher peaks 
compared to the coefficients A, the coefficients A will 
be smaller than the coefficients |D| where the signal 
portion in (4) is bigger, but bigger than coefficients |Dn|
where there is no signal. Consequently, they can be used as 
a threshold  for filtering of the coefficients D:

 = A, where R+  {0}. (5) 

The coefficient can be obtained from the condition for 
the coefficients D and A to have equal energy: 
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For the parameter  it is obtained: 
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Since the coefficients D and  have equal energy but 
not exactly same form, it holds that if for some i, |D(i)| > 

A(i) (the signal is strong), then for some i, |D( )| < A( )
(there is noise). 

In general, since the noise n is proportional to the local 
signal intensity, it can be expressed as: 

,1,,0,)()()( 01 Liisisin n
n   (8) 

where L is the length of the vectors n and s. In addition, 
the wavelet transform is a linear operation and wavelet 
coefficients depend on the signal. The absolute value 
|Dn(i)| can be written as: 

.1,,0,)()()( 01 LiiAiAiD n
nn  (9) 

For the threshold  it follows that: 
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where , 1, … , n R.
The coefficients 0, 1, … can be obtained by 

minimizing the error E in the smallest squares sense: 
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For the purpose of simplicity, the threshold  can take 
the form (5), and in the same time the error function E
which is to be minimized is: 
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But, the problem is a bit more complex. This is 

illustrated through a deterministic 1-D signal (Fig. 1a)
contaminated with artificially generated noise proportional 
to the signal intensity (Fig. 1b). The first level 
approximation coefficients are shown in Fig. 1c. The 
approximation coefficients are obtained by using non-
decimated wavelet transform [3] and NPR-QMF filters 
from [5]. From Fig. 1 it can be noticed that the 
approximation coefficients follow the signal contour. 

In Fig. 2 the first level approximation and detail 
coefficients, A and D, are given on a part of the interval. 
The points in Fig. 2b denote the coefficients values. By 
comparing Fig. 2  and Fig. 2b it can be seen that the 
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                                                 (a)                           (b) 
Fig. 2. Part of the first level wavelet coefficients from the signal shown in Fig. 1b on the interval. ( ) Approximation coefficients A;

(b) detail coefficients D.
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                        (e)                                            (f) 
Fig. 1. ( ) Deterministic signal; (b) noisy signal; (c) first level 

approximation coefficients; (d) reconstructed signal by using the 
proposed approach; (e) reconstructed signal by using the 

universal global threshold with db7; (f) reconstructed signal by 
using multiscale product.
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coefficients D contain signal details Ds around the 
positions 160 and 180 (jumps in Fig. 2 , i.e. peaks in Fig.
2b); while in the other regions in the interval 120-220 of 
the coefficients D there is noise. Also it can be noticed 
from Fig. 2  that the signal intensity in the interval 
120-160 is higher than the signal intensity in the intervals 
160-180 and 180-220, so the noise in Fig. 2b follows the 
signal level, too: it is higher in the interval 120-160, and 
lowest in the interval 180-220. 

In addition, in Fig. 2b it can be seen that the detail 
coefficients |D| do not form monotonically increasing or 
decreasing vectors on  given interval and do not have 
local extrema (maximums/minimums) with values that 
vary very little from the near coefficients values. On the 
contrary, the coefficients D in Fig. 2b are like waves and 
very often change the sign of their values. Hence, some of 
the coefficients have values that are close to zero, and as a 
consequence they contain a lot of local extremes 
(maximums/minimums). The values of these local 
extremes can differ a lot from the near coefficients values. 
As a consequence of this, a mistake will be made if all 
detail coefficients (including those close to zero) take part 
in the normalization of the coefficients  (5-7), i.e. 
minimization of the error function (10). These coefficients 
(with values close to zero) should be omitted because they 
exist only as a result of the fast change of the sign of the 
coefficients D. Hence, it is better to form new signals D1
and A1 from the detail and approximation coefficients, D
and A, respectively, consisted only from the local 
extremes. After that a threshold  should be found through: 

1) Approximation coefficients normalization in (5) 
where the coefficient  is found as 

i

i

iA

iD

2
1

2
1

)(

)(
 or through (13) 

2) Minimization of the new function E1:
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The simplified form in (12) is: 
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The coefficients D1 in (13) and (14) are selected 
according to the following mini-algorithm:
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while the coefficients A1 are selected from the coefficients 
A for those indices i for which D’(i) = D(i), i.e. when the 
particular coefficient D(i) is a local extreme. 

4. EXPERIMENTAL RESULTS 

In this Section, our experimental results are explained. 
The experiments are made with the signal given in Fig. 1b
and the image in Fig. 6a. In both experiments, the non-
decimated wavelet transform is performed by using NPR-
QMF prototype filter, instead of wavelet filters. 

For the case with 1-D signal the threshold is calculated 
in two ways: 1) by normalization of the coefficients A
using all the samples in A and D; 2) by normalization of 
the coefficients A using A1 and D1 (the local extremes in A
and D). A comparison between these two thresholds is 
given, and also the filtered wavelet coefficients are 
compared with the coefficients obtained from the noise-
free signal. In Fig. 3 the detail coefficients from the noise-
free and the noisy signal are given. Fig. 4 shows the detail 
coefficients |D| and two thresholds obtained with 
normalization of the coefficients A in (5) by using the 
coefficients A and D in (7), i.e. A1 and D1 in (13). From 
both graphs in Fig. 4 it can be noticed that where the noise 
level is higher, the threshold is higher and vice versa. 
Similar results for the threshold are obtained when it is 
obtained through minimization of the error function in 
(15). Moreover, adding more terms in (10) and minimizing 
the error function in (14) instead that in (15) does not 
change the threshold a lot. When the parameter is
estimated through the normalization of the coefficients A
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                       (a)                                             (b) 
Fig. 3. ( ) First level detail coefficients of the noise-free signal; 

(b) first level detail coefficients of the noisy signal.
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Fig. 4. First level detail coefficients |D| and the threshold  when 

the parameter  is estimated through the normalization of the 
coefficients A by using: ( ) all samples of A and D in (9); (b) A1

and D1 in (15).

0 50 100 150 200 250 300 350 400 450 500 550 600600
-10

-8

-6

-4

-2

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450 500 550 600600
-10

-8

-6

-4

-2

0

2

4

6

8

10

                        ( )                                             (b) 
Fig. 5. Filtrated detail coefficients by using the threshold from: 

(a) Fig. 4a; (b) Fig. 4b.
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in (7), the detail coefficients |D| (grey line) and the 
threshold  (black line) are given in Fig. 4  (in this case 
is estimated from all 600 samples of D and A). In the case 
when the detail coefficients with values close to zero are 
discarded, the coefficients |D| and the estimated threshold 
through (13) are given in Fig. 4b (in this case  is 
estimated from 425 samples of D and A). By comparing 
these two graphs it can be seen that the threshold in Fig. 4b
is extended and closer to the peaks of the coefficients |D|,
which means it is better generated than the threshold in 
Fig. 4a. This can be better noticed from Fig. 5, where the 
coefficients filtered by using these two thresholds are 
given. By comparing the filtrated coefficients in Fig. 5
and 5b with the noise-free coefficients in Fig. 3 , it can be 
seen that filtrated coefficients in Fig. 5b are closer to the 
coefficients in Fig. 3 . Moreover, the use of detail 
coefficients from Fig. 5b in the signal reconstruction will 
result in distortion at the signal jumps. 

In order to quantitatively compare the proposed method 
to some known wavelet based methods, we use the energy 
of the remained noise in the filtrated signal s1 as a measure: 

i
n isisE 2
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Table 1 contains the results when the signal is 
reconstructed from the first level approximation and 
filtrated detail coefficients. It can be seen that when the 
proposed approach is applied, the noise energy is weaker 
compared to the other methods that use a global threshold. 
However, from Fig. 1d, e and f it can be noticed that 
reconstructed signals when a global threshold or multiscale 
product are used, suffer from distortion at the signal jumps 
positions, while there is no distortion at the signal filtrated 
with the proposed approach. This distortion appears as a 
result of removing signal information contained in the 
detail coefficients when a global threshold is used. 

Another experiment is made with the image in Fig. 6a.
Instead of adding non-linear noise followed by denoising 
the noisy image, the image in Fig. 6a is used for 
generating the new image given in Fig. 6b. The new image 
is generated in a way that each non-zero pixel from the 
image in Fig. 6a generates in its neighbourhood m pixels, 
where m depends on the pixel intensity. This is very close 
to the way of generating NM images, because each point 
source of radionuclide contributes with signal and noise in 
its neighbourhood. Afterwards, an estimation of the true 
signal in Fig. 6b is made by using the proposed method 
and some known wavelet based denoising methods. After 
filtering the image, the estimated image is normalized in 
order to have the same energy as the original image in Fig.
6a. The results are shown in Table 2. SNR1 is signal-to-
noise ratio for the generated image in Fig. 6b, while  

SNR2 is the improved signal-to-noise ratio. From Table 2
it can be noticed the advantage of the proposed method 
over the other methods. 

5. CONCLUSION

In this paper we propose a wavelet based method for 
denoising signals that contain signal-dependent noise. 
Instead of using a global threshold, which is inappropriate 
for filtering wavelet coefficients with varying noise level, 
we propose an estimate of a non-uniform threshold directly 
from the noisy signal.
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Known methods Proposed
wavelet universal [1]  [4] sq.root [1] [2] 
sym4 2011 2032 2071 1566 
sym7 2041 2094 2149 1714 
coif3 1958 1964 2076 1753 
coif5 1923 1959 2059 1847 
db2 2017 2040 2091 1614 

1586

db8 1789 1795 1838 1787 

Table 1. Comparison of the proposed method with known 
methods in case of denoising the 1-D signal from Fig. 1b

SNR2 Known methodsSNR1
generat.

SNR2
propos. wavelet universal [1]  [4] sq.root [1] [2] 

sym3 +3.975 +1.329 +3.462 +3.309
sym5 +3.947 +1.326 +3.458 +2.911
db3 +3.975 +1.329 +3.462 +3.2604.323 +4.384

coif5 +3.751 +1.325 +3.308 +3.159

Table 2. Comparison of the proposed with known methods in 
case of true signal estimating in the image in Fig. 6b

                       (a)                                             (b) 
Fig. 6. (a) Test image; (b) Generated image.
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