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Non-uniform Threshold as an Alternative to Uniform
Threshold in Denoising in Wavelet Domain

Mitko Kostov, Cvetko Mitrovski, and Mom Cilo Bogdanov

Abstract: In this paper we present the advantage of non-uniform oviéoramthresh-
old wavelet shrinkage denoising method, applied on noigyads with signal depen-
dent noise. We illustrate our results by comparing the neisgrgy after using the
both filtration methods on the same set of artificially noisetaminated images. The
experiments are made with NPR-QMF filter banks instead vhighfilter banks that
are commonly used in wavelet applications.

Keywords: Denoising, filter bank, signal-dependent noise, threshelielet do-
main filtering.

1 Introduction

ATELY, there are many developed methods for image noise filtration in a trans-
formation domain [1-8]. In the last decade the stress on researches in this

field is put on the signal processing in the wavelet domain.

The reason of using the wavelet transform for denoising purposeatisih
equately chosen wavelet basis groups the coefficients in two groupes witim a
few coefficients with high SNR, and other with a lot of coefficients with low SNR
In case of white Gaussian noise, the noise level is same through wholé angha
for all the wavelet coefficients, independently on the signal. So, chgasgiobal
threshold shrinks all the coefficients for an equal portion. But, in someakig
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like nuclear medicine (NM) images, the noise level is proportional to the logal s
nal intensity. Obviously, denoising them with a global threshold is not the bes
solution.

In this paper we present results obtained by using our non-uniforrahbia
shrinkage method for removal of signal-dependent noise. We illustratedise
energy in the filtered signal is bigger when any global threshold is usagaed
to the case when the proposed non-uniform threshold is used. We disdose
results of denoising of standard test images when our method and knowodseth
are used. The paper is organized as follows. The method uses stavalaiet
filtering outlined in Section Il. In Section Il we discuss how to estimate theingry
threshold. In Section IV we verify the validity of our approach on deterrtimis
signals contaminated with signal dependent noise. At the end, Sectiorclidesn
the paper.

2 Wavelet Shrinkage Method

The most popular form of conventional wavelet-based signal filterifgcgh be
expressed by:

{A®W DO D@ DM} =DWT(s+n) 1
s — IDWT(f(A¥ hW. x DD h@ «x D@ o xpky, @)
wheres is noise-free signah is noise,s is filtered signalA®) andD® are ap-

proximation and detail coefficients at level respectively,f is a function of the

modified detail and approximation coefficients;, is element-by-element multi-
plying and

h® = {9, h5, ... h{]T

are weighting coefficients of the corresponding detail coefficients at kev
In case of conventional hard threshold filtering the weighting coefficiats

1, if DY) >1®
0, otherwise

ﬁ”mad):{ )

while for the soft threshold filtering they are
sgnp|
()

_SYR T ipW (k)
hgk) (soft) = 1 ! , |if |DJ |>T1 7 3)
0, otherwise
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wheret(®¥ is user specified threshold for tketh level details.

Having in mind that the noise is proportional to the local signal intensity, in-
stead of using a global threshotd® in (3), we propose using a user specified
varying thresholdrj(k), that depends on the details positipn
3 Non-uniform Threshold determination

The approximation coefficients contain the low frequency part of the kighare-

fore one could say that the information part or "identity” of the signal igaimed

in the approximation. So, if we assume that the noise is proportional to the local
signal intensity at certain levél then the non-uniform threshold vector should be
expressed as

T = a|al), (4)

whereA® is matrix with the approximation coefficients at lekelanda is a con-
stant which should be determined by equalizing of the energy of the moddied v
tors of the approximation and the detail coefficiedts(®) andD,, ¥, respectively,
by using the following formulae:

S (Dh)?2 =3 (aAy)? (5)

The modification of the detail coefficienB is obtained fromD® by using
the following reasoning. SincB® contain the high part of the spectrum of the
original signal, its coefficients frequently change their polarity with the paositio
(time). Whenever the change of the polarity of two consecutive local regise
(peeks) occur, one can discard all the detail coefficients on the pashietveen
those peaks (due to their negligible magnitudes) in order to oB&irfrom DX

Hence,D,™ is a vector identical t®® on all positionsj, except on the posi-
tions between the consecutive peeks with opposite polaritib&irwhereD, ¥ is
zero, while vectoA,® is constructed by using

AW =AW« signD, ). ©

Since the coefficient®,, anda A, have equal energy, it holds that for the posi-
tions j, for which Dy j| > a|Ay j| the signal is less noise contaminated, and where
IDn,j| < alAn j| the signal is more noise contaminated.

In general, we can assume that for noise stands polynomial deperatetive
local signal intensity, hence, for the threshaldt some levek the following can
be written:
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k K k k .
¥ =a®. 1AM A2 (AT =0l )

K (k)

wherea®) = [ac(, ai ...a,ﬁk)], L is the length of the vectors andt. The coeffi-
cientsag, ai, --- can be obtained by minimizing:

nJ

1
(O (k) _ 7(Ky2
B = 3 300k~ 1) ®)
in the smallest squares sense.

4 Experimental Results

In this Section, we illustrate the effects of denoising the artificially contaminated
signals (images) by applying the conventional shrinkage methods andopased
non-uniform threshold approach. The noise energy in the filteredlsghggher
when any global threshold is used compared to the case when the ptapmse
uniform threshold is used.

The noise contaminated images are generated by superpositioning of 2bifted
random Gaussian functions (centered at positiof)) with energies proportional
to the pixel intensities at positiai, j) in the noise-free images.

By applying of the conventional and proposed method we obtain filtrated im-
agess; (normalized to the energy of the noise free imagleand compare with the
energy of the noise free images by using the following formula

En:Z(S,j—Sli,j)z- 9)
N

When the signal in Fig. 1ais filtered by using the proposed method we obtained
1586 for the noise enerdy,. The proposed algorithm uses NPR-QMF filters with
length 12, stopband frequency7@, and overall reconstruction error of the de-
signed QMF bank 0.001 [10]. In addition, we filtered the signal by usingdstal
technique of wavelet shrinkage [9] and used different wavelets #fiedesht values
of the uniform threshold. The graph for dependence Bf, on 1 for values of
T between 0 and maximal intensity in the detail coefficients is plotted in Fig. 2a.
The threshold value = 0 means that all the detail coefficients are kept, while the
valuet = 1 (which corresponds to a threshold equal to the maximal intensity in the
detail coefficients) means that all the detail coefficients are discardedn Fig.
2a it can be noticed that for any value of the uniform threshold, the grodrihe
remained noise is not smaller than 1586. This comes from the fact that using a
uniform threshold for removing signal-dependent noise is not an ategolution.
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Fig. 1. Deterministic test noisy signals.

Similar results are presented in Fig. 2b. The graph shows dependeBgemf

T after applying operation of variance normalization [1] on the images béiese

are filtered by using standard wavelet shrinkage.
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Fig. 2. (a) Dependence of the noise endegyn the uniform threshold for the test signal in Fig. 1;

(b) Dependence of the noise enefgyon T after the variance stabilizing operation is applied.
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(©
Fig. 3. Noisy images.

Table 1. Comparison of the proposed with known methods in case ofignal stimating in the
testimages in Fig. 1.

ASNR Known methods ASNR Proposed algorithm
Image SNR, | Wavelet Visu Sure | Bayes| Press| Var. [ Xu- Bi Prob Energy LS
9 1 Shrink Shrink | Shrink stab.| Weaver| Shrink | Shrink | equalizing| minimization

[2] soft/hard|  [4] [6] [5] [1] [3] [7] [8] soft/hard soft/hard

sym3 1.19/0.13 | 0.28 | 0.89 | 0.86| 1.30| 2.03 | 0.37 | 0.51
sym5 1.19/0.14 | 0.28 | 0.88 | 0.86|1.29| 1.79 | 0.33 | 0.50
db3 1.19/0.13 | 0.28 | 0.89 | 0.86 | 1.30| 2.01 | 0.37 | 0.51
db5 1.19/0.10 | 0.28 | 0.73 | 0.86|1.18| 198 | 0.37 | 0.44
sym3 4.00/1.65 | 0.21 | 4.08 | 1.35[3.50 3.36 | 1.14 | 2.04
sym5 3.97/1.55 | 0.21 | 4.06 | 1.34|3.49| 298 | 1.00 | 1.98
db3 4.00/1.65 | 0.21 | 4.08 | 1.35|3.50| 3.32 | 1.13 | 2.04
db5 3.81/1.19 | 021 | 4.07 | 1.34[3.38| 322 | 1.08 | 175
sym3 2712.02 | 017 | 214 [ 099 [2.61| 224 | 1.23 | 1.87
sym5 2.712.00 | 0.17 | 220 | 1.00 [ 2.62| 203 | 1.07 | 1.85
sym7 2.741.97 | 0.17 | 222 | 1.00 | 264| 220 | 1.18 | 1.84
db3 2.712.02 | 0.17 | 214 | 099 |261| 222 | 1.23 | 1.87
db6 2.742.04 | 0.17 | 221 | 099 |264| 222 | 1.24 | 1.88
coif3 2.741.96 | 0.17 | 225 | 1.00|264| 219 | 1.19 | 1.84
coifs 2.741.89 | 0.17 | 230 | 1.00|266| 219 | 1.17 | 1.80
bior9/7 | 2.70A.96 | 0.17 | 2.19 | 1.00| 2.60| 2.14 | 1.18 | 1.85

Phantom| 2.92dB 2.471.71 2.38/1.52

Circles | 4.38dB 4.462.67 | 4.22/2.33

Bars 4.38dB 2.851.89 | 2.73/1.68

Further, we made experiments with the images in Fig. 1 and Fig. 3. They both
contain signal-dependent noise with rather low SNR. The images in Fig.staare
dard nuclear medicine test images, while the images in Fig. 3 are well known test
images commonly used for comparing performances of different imagessing
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techniques. The maximal intensity in all three images in Fig. 1 is 22. The perfor-
mances of the applied filtration methods obtained with various wavelet-based filte
ing methods, are presented in Table 1 in which $MRsignal-to-noise ratio for the
generated images whilsSNR is the improved signal-to-noise ratio (after the filter-
ing). When the proposed method is used with two differently generatedtidss
(the last columns) it can be noticed that the filtering with non-uniform thidsho
determined through energy equalizing (Eq. 5) gives better results cethfmathe
filtering with non-uniform threshold determined through LS minimization of the
square measure (Eq. 8).

The results of filtering the images in Fig. 3 are shown in Table 2. They are
similar to the results in Table 1. From both Table 1 and Table 2 the advantage
of the non-uniform threshold shrinkage over the uniform thresholthlshge is
evident.

Table 2. Comparison of the proposed with known methods in case ofignal £stimating in the
images in Fig. 3

| | | ASNR Known methods | ASNR Proposed algorithm
Image | SNR; | Wavelet Visu Bayes | Press| Var. Xu- Bi Prob Energy LS
Shrink Shrink stab.| Weaver| Shrink | Shrink | equalizing| minimization
[2] soft’hard| [6] [5] [1] [3] [7] [8] soft/hard soft/hard

sym3 5.004.68 2.81 | 1.49[4.38| 3.72 213 | 3.83
sym5 4.97A.69 2.80 | 1.49|4.35| 3.28 1.82 | 3.80
Lena 5.27dB| db3 5.004.68 2.81 | 1.49|4.38| 3.67 2.13 | 3.83 | 5.103.04 4.81/2.63
coif5 4.98A4.70 2.80 | 1.49|4.33| 3.47 1.88 | 3.80
bior9/7 | 4.904.62 2.79 | 1.47 | 4.27| 3.61 1.96 | 3.75
sym3 5.224.95 2.94 [ 156 [4.52| 3.89 211 | 3.99
sym5 5.144.87 2.89 | 1.56 | 4.47| 3.39 1.80 | 3.96
House | 5.76dB| db3 5.22A.95 2.94 | 156 | 4.52| 3.87 211 | 3.99 | 5.293.17 4.99/2.74
coif5 5.14A.84 154 | 4.45|3.62| 1.87 211 | 3.94
bior9/7 | 5.07A.72 2.87 | 1.54 | 439| 3.69 1.94 | 3.88
sym3 4.588.99 3.19 | 1.42[4.00| 3.48 1.69 | 3.27
sym5 4.594.07 3.16 | 1.43|4.02| 3.08 1.47 | 3.30
Camera| 5.32dB| db3 4.588.99 3.19 | 1.42|4.00| 3.46 1.68 | 3.27 | 4.712.86 4.46/2.50
coif5 4.584.13 3.11 | 1.43|4.02| 3.23 1.49 | 3.49
bior9/7 | 4.54B.97 3.15 | 1.42|3.96| 3.33 158 | 3.26

5 Conclusion

In this paper we compare non-uniform and uniform threshold filtering noistoo
denoising artificially noised deterministic test images. Experimental results show
that for the signal-dependent noise filtering with non-uniform threshalgpes-
forms uniform threshold filtering for any level of the threshold and altlugavelets

we have experimented with.
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