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Abstract – In this paper the research on the 3D modelling 

from video is presented. We give overview of 3D modeling 

from video, especially the second step (structure and 

motion recovery) and the goal is to find the best algorithm 

for finding and fitting features to create a 3D model from 

multiple view of images.  

Will be considered  suitable  algorithms  to describe 

the facilities, whether used triangular polygonal mesh etc.  

cloud of points to describe the exterior of the building.  
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I. INTRODUCTION 

The rapid increase in recent years of the graphics 

processing capabilities of even relatively modestly priced 

personal computers has lead to the widespread use of 3D 

graphics. Complex and large–scale 3D models are commonly 

used in areas such as animation, computer games and virtual 

reality. Currently most 3D models are created manually by 

graphic artists making it a time–consuming, and therefore 

expensive, process. If the model to be created has no real–

world counterpart then there is little choice but to design it by 

hand. However, in many cases the aim is to create a model of 

an actual scene or object and, in this case, it is obviously 

highly desirable to create a process whereby the model may 

be automatically acquired. The increase in availability of high 

quality, consumer–level, digital video and still cameras means 

that the capability to capture high–resolution digital images 

and subsequently perform processing on them is now within 

the reach of most people. 

The automatic recovery of three dimensional structure from 

video footage of scenes has been a long–standing area of   

research in computer vision. This problem, known as 

Structure from Motion (SfM), involves trying to recover, 

solely from the sequence of images, the 3D structure of a 

scene and the position and orientation (pose) of the camera at 

the moment each image was captured. 

Applications for SfM can be broadly split into two 

categories, those that require geometric accuracy and those 

that require photorealism: 

Geometric accuracy: These types of application are 

generally less concerned with the visual appearance of the 

model but require the scene structure and camera motion to be 

reconstructed with a high degree of accuracy. Robot 

navigation, for instance, requires high–accuracy models, but 

the visual appearance of the model is unimportant. The 

reverse engineering of existing objects for use in CAD 

requires the structure of the object to be recovered with a high 

degree of accuracy. Film special effects that place computer–

generated objects into the film and other ‘augmented reality’ 

applications require the camera motion to be very accurately 

reconstructed but the appearance of the structure is irrelevant 

as it is never seen in the finished product. 

Photorealism: In contrast, there are a growing number of 

situations geometric accuracy of the underlying reconstruction 

is less important as long, as, for the purposes of the 

application the model visually resembles the real            scene. 

This is the case for applications such as virtual reality, 

simulators,            computer games and special effects that 

require a virtual set based on a real  scene [1]. 

In computer vision, several systems have been developed to 

automatically recover a cloud of 3D scene points from a video 

sequence (e.g. [Pollefeys et al. 2004]). However these are 

vulnerable to ambiguities in the image data, degeneracies in 

camera motion, and a lack of discernible features on the 

model surface. These difficulties can be overcome by manual 

intervention in the modelling process. In the extreme case, a 

modelling package such as Blender3D can used to build a 

model manually, but it is difficult and time consuming to 

create a photorealistic result by this process. A more 

appealing option is to use all of the information that can be 

derived from the video using computer vision techniques to 

inform and accelerate an interactive modelling process [2]. 

II. OVERVIEW OF 3D RECONSTRUCTION 

FROM VIDEO SEQUENCES 

Main tasks of 3D reconstruction are: 

 

 
Figure 1: Main tasks of 3D reconstruction 

 

The 3D reconstruction can be divided into 4 main tasks 

(Figure 1), which are discussed in the following sections: 

1. Feature detection and matching: The objective of this 

step is to find out the same features in different images and 

match them. 
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2. Structure and Motion Recovery: This step recovers the 

structure and motion of the scene (i.e. 3D coordinates of 

detected features; position, orientation and parameters of the 

camera at capturing positions). 

3. Stereo Mapping: This step creates a dense matching map. 

In conjunction with the structure recovered in the previous 

step, this enables us to build a dense depth map. 

4. Modeling: This step includes procedures needed to make 

a realistic model of the scene (e.g. building mesh models, 

mapping textures). 

Feature detection and matching (Fig.3) is process that 

detects and match features in different images. Video 

sequence is created of more images so in this step we must 

find interested points (point feature), i.e. detectors and 

descriptors.  

The most important information a detector gives is the 

location of features, but other characteristics such as the scale 

can also be detected. Two characteristics that a good detector 

needs are repeatability and reliability. Repeatability means 

that the same feature can be detected in different images. 

Reliability means that the detected point should be distinctive 

enough so that the number of its matching candidates is small. 

A descriptor is a process that takes information of features 

and image to produce descriptive information i.e. features 

description which are usually presented in form of features 

vectors. The descriptions then are used to match a feature to 

one in another image. A descriptor should be invariant to 

rotation, scaling, and affine transformation so the same feature 

on different images will be characterized by almost the same 

value and distinctive to reduce number of possible matches. 

The second task Structure and motion recovery recovers the 

structure of the scene and the motion information of the 

camera. The motion information is the position, orientation, 

and intrinsic parameters of the camera at the captured views. 

The structure information is captured by the 3D coordinates of 

features. Because the fact that video sequence is created of 

more images, for this step we must research 3D reconstruction 

from multiple views i.e. multiple view geometry.  

For the calibrated case, the essential matrix E [3] is used to 

represent the constraints between two normalized views. 

Given the calibration matrix K (a 3x3 matrix that includes the 

information of focal length, ratio, and skew of the camera), 

the view is normalized by transforming all points by the 

inverse of K:  ̂      , in which x is the 2D coordinate of a 

point in the image. The new calibration matrix of the view is 

now the identity. Then with a corresponding pair of points 

(    ) in homogeneous coordinates, E is defined by a simple 

equation:  ̂    ̂ = 0. 

The research has later been extended to the uncalibrated 

case. During the 1990s, the concept of fundamental matrix F 

was introduced and well-studied by Faugeras [4] and Hartley 

[5]. The F matrix is the generalization of E and the defining 

equation is very similar:          
 

 
Fig.1 Two-view geometry 

Three-view geometry is also developed during the 1990s. 

The geometry constraints are presented by trifocal tensors that 

capture relation among projections of a line on three views. 

The trifocal tensor defines a richer set of constraints over 

images (Fig.2). Apart of a line-line-line correspondence, it 

also defines point-line-line, point-line-point, point-point-line, 

and point-point-point constraints. Furthermore, it introduces 

the homography to transfer points between two views. 

 
Fig.2 Line correspondence among three view - basis to define 

trifocal tensors 

 

Reconstruction with only knowledge of feature 

correspondences is only possible up to a projective 

reconstruction and there are many ways to obtain projection 

matrices from a geometry constraint, i.e. a fundamental matrix 

or a focal tensor. Hence projective reconstruction is mainly 

the recovery of fundamental matrices or focal tensors. 

Methods, implementation hints, and evaluations are well 

discussed by Hartley and Zisserman in [6]. If the input, i.e. 

feature correspondences, includes outliers, robust methods 

such as RANSAC, LMS can be employed to reject them. 

Stereo mapping task can be divided into two sub tasks: 

rectification and dense stereo mapping. The first one exploits 

the epipolar constraint to prepare the data for the second one 

by aligning a corresponding pair of epipolar lines along the 

same scan line of images thus all corresponding points will 

have the same y-coordinate in two images. This makes the 

second task, roughly search and match over the whole image, 

faster. 

The final step is to map texture on the model. Triangulation 

is quite a simple task. Points of each stereo map are 

triangulated to generate depth maps. Those maps are used to 

construct the mesh of the scene and finally, with texture 

extracted from frames, the complete textured model can be 

built. 

 



III. STRUCTURE AND MOTION RECOVERY 

This step is actually the main step in 3D modeling from 

video, because in this step we must choose which algorithm to 

be used for find corresponding points of two images or more 

images  with moving cameras  at different points in time, with 

moving objects using different methods such as  feature 

matching and block matching. We are research RANSAC, 

Least Squares, MSAC and MLESAC. 

 

 
 Fig.3 Feature matching 

 

 

RANdom SAmple Consensus algorithm is: 

 introduced Fischler and Bolles in 1981 

 iterative method 

 non deterministic 

1.  randomly select smallest possible subset of data 

(hypothetical inliners) an create model 

2. test data against model, expand hypothetical inliners with 

all points inside a threshold 

3.  reestimate model with all points supporting the model 

4.  repeat and keep models with most support 

RANSAC algorithm is method to estimate the parameters 

of a certain model1 starting from a set of data contaminated 

by large amounts of outliers of a model using datasets 

containing more than 50% of outliers. A datum is considered 

to be an outlier if it will not fit the “true” model instantiated 

by the “true” set of parameters within some error threshold 

that defines the maximum deviation attributable to the effect 

of noise. [7] 

Despite many modifications, the RANSAC algorithm is 

essentially composed of two steps that are repeated in an 

iterative fashion (hypothesize and test framework): 

• Hypothesize. First minimal sample sets (MSSs) are 

randomly selected from the input dataset and the model 

parameters are computed using only the elements of the MSS. 

The cardinality of the MSS is the smallest sufficient to 

determine the model parameters (as opposed to other 

approaches, such as least squares, where the parameters are 

estimated using all the data available, possibly with 

appropriate weights). 

• Test. In the second step RANSAC checks which elements of 

the entire dataset are consistent with the model instantiated 

with the parameters estimated in the first step. The set of such 

elements is called consensus set (CS). 

RANSAC terminates when the probability of finding a 

better ranked CS drops below a certain threshold. In the 

original formulation the ranking of the CS was its cardinality  

( i.e. CSs that contain more elements are ranked better than 

CSs that contain fewer elements). 

 

 

  
         Data with outliers  Line obtained with       

RANSAC, no influence of 

the outliers.                . 
 

 

Fig.4 Example of line obtained with RANSAC algorithm 

without influence of outliers. 

 

 

The benefits of RANSAC are: 

 only takes into account the number of inliers 

 RANSAC minimizes cost. 

 

Least Squares 

 

 Calculate parameters of model function 

 Overdetermined data set 

 Minimize sum of squared residuals 

  
   Least squares without          

outliers 
   Least squares with outliers. 

  
Fig.5 Example of line obtained with Least Squares 

 

 

MSAC - M-estimator SAmpling Consensus use score for 

inliners. 

 

 



MLESAC - Maximum Likelihood Estimation SAmple 

Consensus 

 

The MLESAC algorithm is an example of RANSAC that uses 

different cost function than the cardinality of the support. The 

algorithm was introduced by Torr and Zisserman [8] and 

further improvements were made by Tordoff and Murray [9]. 

Instead of maximizing the support of the model, the likelihood 

of the model is maximized. The error distribution is 

represented as a mixture of inlier and outlier distributions. 

 

 

IV. CONCLUSION 

The process of 3D modeling over the four main steps: 

feature extraction and matching, structure and motion 

recovery, stereo mapping, and modeling. Each step or even 

sub-step is already a  field of research. The goal of this paper 

is to give overview of 3D modeling from video, especially the 

second step (structure and motion recovery) and to find the 

best algorithm for finding and fitting features to create a 3D 

model from multiple view of images. Of the process of choose 

the algorithm and its testing, we can define as: 

 

  correspondence problems provide environments 

with high number of outliers 

  least squares fails in these environments 

  RANSAC provides significant improvement in 

presence of high numbers of outliers 

  Performance can be additionally improved by using 

more complex error models 

_ Counting (RANSAC) 

_ Square distance (MSAC) 

_ Negative log likelihood (MLESAC). 
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