KNOWLEDGE DISCOVERY DATABASES (KDD) PROCESS IN DATA MINING

Markusoski, Ljupce and Zdravkoski, Igor and Andonovski, Miroslav and Jovanoska, Aleksandra (2019) KNOWLEDGE DISCOVERY DATABASES (KDD) PROCESS IN DATA MINING. INTERNATIONAL CONFERENCE PROCEEDING. pp. 529-539. ISSN 978-9989-695-65-0

This is the latest version of this item.

[img] Text
Paper Ljupce Markusheski PhD.docx

Download (285kB)

Abstract

Data Mining is a powerful tool for companies to extract the most important information from their data warehouse. These tools allow you to predict future trends and behaviors in order to be able to provide activities based on specific knowledge. Volume of information is increasing every day that we can handle from business transactions, scientific data, sensor data, Pictures, videos, etc. So, we need a system that will be capable of extracting essence of information available and that can automatically generate report, views or summary of data for better decision-making. Data mining is used in business to make better managerial decisions by:  Automatic summarization of data,  Extracting essence of information stored,  Discovering patterns in raw data. Data Mining also known as Knowledge Discovery in Databases, refers to the nontrivial extraction of implicit, previously unknown and potentially useful information from data stored in databases. Keywords: Data Minig, tools, databases, data warehouse, knowledge.

Item Type: Article
Subjects: Scientific Fields (Frascati) > Social Sciences > Economics and Business
Divisions: Faculty of Economics
Depositing User: Mr Dimitar Risteski
Date Deposited: 19 Feb 2020 10:34
Last Modified: 02 Mar 2020 14:00
URI: http://eprints.uklo.edu.mk/id/eprint/3082

Available Versions of this Item

Actions (login required)

View Item View Item