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Abstract – In this paper we present a comparative analysis of 
the performance both as accuracy and time consumption of two 
neural network classifiers for handwritten character recognition 
– a basic self organizing map and neocognitron proposed by 
Kohonen and Fukushima respectively. The results of our study 
are found useful for characters and pseudo-characters 
recognition as a certain stage of processing in a whole 
handwriting recognition system. 
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I. INTRODUCTION 

A possible concept used in some systems for handwriting 
word recognition is splitting words in single characters and 
pseudo-characters [1]. Thus the separated elements of a word 
should be recognized at a later stage in these systems using a 
number of preliminary chosen rules based on common 
handwriting and language characteristics to form word 
hypotheses. After confirming or rejecting these hypotheses 
applying lexicon verification along with language statistics 
and other techniques we are able to recognize handwritten text 
word by word. 

Considering the large number of methods developed for 
handwritten character recognition [2,6] and their capability to 
recognize pseudo-characters (parts of  one or more characters) 
we decide to directly compare a self-organizing map [3] and a 
neocognitron [4] proposed by Kohonen and Fukushima 
respectively. These both self-learning neural networks will be 
compared in their basic form considering recognition accuracy 
with high quality images of characters free from noise, shifts, 
etc. Our main goal is to find out to what degree they differ one 
from another as for their recognition capability based on the 
different architecture and working principles they have when 
high quality test data is passed to them. 

In the next part we present a description of the structure, 
preprocessing, learning and recognition algorithms used for 
both networks in our study. The third part contains the 
experimental results for different parameters defined in part 
two. In the last part a conclusion is made which of these 

classifiers is more appropriate to be included in a complete 
handwriting recognition system. 

II. COMPARED CLASSIFIERS DESCRIPTION  

The architecture of the self-organizing feature map (SOFM) 
used in our experiments is given in Fig.1. 

 

 
 

Fig.1. Self-organizing feature map architecture 
 

The input receives consecutively vectors p with dimensions 
Rx1, where R=256, each p represents a character (or pseudo-
character). At first a grayscale images for the separate 
characters are used which we binarize using Otsu algorithm. 
Afterwards we resize the binary symbol to 256x256 pixels 
with nearest neighbour interpolation. Then thin or thicken “the 
width of the pen” used to 12 pixels using erosion or dilation l 
times: 

 
2
12−

=
t

l , (1) 

where t is the initial “width of the pen” found as a maximal 
value in a histogram representing all “the widths of the pen”  
(number of ones closed between zeros for each line in the 
image if an inverted one is used) in the resized binary image. 
This preprocessing step is needed to make characters as 
invariant as possible for further forming the learning extract. 
Finally we divide the result image to 16x16 pixels sized 
blocks. The number of pixels (ones for example) 
corresponding to character in each block is calculated and the 
normalized value (in range [0,1]) forms a respective 
component for the input vector p. The blocks are passed from 
left to right and from top to bottom. 

We use the original Kohonen learning rule defined as: 
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where i denotes a single neuron; w – the neuron weight; q – 
current step; α – the learning rate; Ni(d) is the neighbourhood 
around a wining neuron from which weights of all neurons j 
should be updated. Here d is the radius of the neighbourhood: 
 },{)( ddjdN iji ≤= . (3) 

IW1,1 from Fig.1 is a weight matrix for all the S input 
neurons (equal to the number of classes/subclasses for all the 
characters) with R weights each. ni

1 is the result from finding 
the distance from p to i-th column of IW1,1: 
 pIWn −−= 1,11

ii , (4) 

which is passed to competitive layer C,  the output from 
which a1 – a Sx1 vector containing one component equal to 1, 
indicating the recognized character and all the other 
components equal to 0. 

Given the preprocessing steps from above it is clear that our 
SOFM operates in 256-dimensional space, for each dimension 
of which a range of 0 to 1 is set. We use midpoint 
initialization for all the neurons’ weights (0.5). The learning 
rate α and neighbourhood distance d are altered through the 
learning procedure. It lasts for a given number of steps Q. The 
neighbourhood distance starts as the maximum distance dmax 
(calculated at first step) between two neurons, and decreases 
to preliminary defined end neighbourhood distance dmin. 
Similarly the learning rate starts at some initial value αinit and 
decreases until it reaches some smaller one αend – both are 
preliminary set. As d and α decrease, the neurons of the 
network typically order themselves in the input space with the 
same topology in which they are ordered physically. 

The neocognitron performs classification of input through a 
succession of functionally equivalent stages. Each stage 
extracts appropriate features from the output of the preceding 
stage and then forms a compressed representation of those 
extracted features. Fig.2 shows the structure of the 
neocognitron for a case of recognizing 10 objects (e.g. digits). 

 

 
 

Fig.2. Structure of a neocognitron for 10 objects 
 

The feature extraction is performed by arrays of S-cells that 
have been trained to respond to certain features that 
characterize the input patterns U0 as it is seen from Fig.2. 
After training the weight vector of an S-cell is equal to the 
sum of the inputs that have appeared within its receptive field. 
Each S-cell also receives an inhibitory signal proportional to 
the root mean square (rms) activity present in its receptive 

field. The behaviour of an S-cell can be mathematically 
formulated as a function φ(.) of a cell’s activation: 
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where x is the vector of activities present at the receptive field 
input, w is the vector of weights learned by the S-cell and rl is 
the selectivity parameter found by a separate closed-form 
training algorithm which we will not discuss. The rms activity 
of the input to the S-cell is defined by: 
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where the vector c=[c1,…,cN]T describes a Gaussian kernel 
that serves to accentuate inputs towards the centre of the cell’s 
receptive field, as well as implementing the arithmetic mean 
of the inputs. bl is a factor set by the learning rule to maximize 
the cell’s response to any training feature. 

Interesting here is the S-cell transfer function considered 
influencing the final recognition accuracy [5]. Originally 
Fukushima used a threshold linear function of the form: 
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but here we will use another two transfer functions in our 
experiments – the more simple threshold function: 
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and the sigmoid transfer function: 

 aSig e
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Fig.3 shows the structure of an S-cell along with the 
described transfer functions. 

 

 
 

Fig.3. S-cell structure with different transfer functions 
 

C-cells compress the representation – the input to a C-cell 
from its receptive field is a subsampling of the activity in the 
preceding S-plane. By susbsampling this activity, a 
compressed representation of the S-plane output is obtained. 
C-cell also blur the activations of the preceding S-planes by 
performing a weighted sum of inputs, this time using fixed 
weights that describe a Gaussian kernel. If we denote the 
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subsampled input as a vector x and the Gaussian kernel as w 
then the activation of a C-cell in Fukushima’s original 
description of the neocognitron can be written as: 
 xwTxa =)( . (11) 

This weighted mean is then passed through a transfer 
function that limits the output of the C-cell to [0,1): 
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Here is the second difference from the very original 
Fukushima’s neocognitron. Again in [5] is noted that blurring 
of S-plane activity by the C-cells is important in allowing the 
neocognitron to be tolerant of a considerable degree of input 
distortion. Thus a ranked order filter is incorporated in the 
very structure of the C-cell. The output of the modified C-cell 
is given by: 
 iiiMax wxx max)( =ψ , (13) 

where x=[x1,…,xN]T is again the subsampled input vector and 
w=[w1,…,wN]T is the Gaussian kernel. We refer to Eq. (13) as 
a weighted max operation. 

III. EXPERIMENTAL RESULTS 

All the experiments are implemented on an IBM® 
compatible PC® with Pentium®4 Processor working at 1.5 
GHz, 256 MB RAM. The operating system is MS® 
Windows® XP® with SP2 and the working environment is 
Matlab® 7.0.1 SP1. 

Our database collected from different authors contains 
images of 14502 lower and upper case Latin characters and 
digits (8-bpp grayscale, 150 dpi). From them we use 8152 
preprocessed (filtered by median and range filters) images of 
lower case characters to train the networks and afterwards 600 
additional images which form the test set (for the recognition 
phase) although a set of 400 is considered to be enough [5]. 

We use the following parameters for the accuracy 
comparison: 

• relative number of  correctly recognized 
characters: 

 100.
m
m

r c
c = , %, (14) 

where m is the number of passed characters for recognition 
(m=600); mc – the number of correctly recognized ones; 

• relative number of wrong classified 
characters:  
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m

m
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where mw represents the absolute number of wrongly 
recognized characters; 

• relative number of non-classified characters:  

 100.
m
m

r n
n = , %, (16) 

where mn represents the absolute number of non-classified 
(rejected) characters. 

Our first experiment includes finding the optimal value for 
the minimum learning rate αmin of the SOFM. We set αmax=0.9 
and dmin = 0.001 – a midrange value for the typical working 
interval [0.000001,1] for the particular case. Before 
recognition phase we train the network for 10 epochs with 26 
classes with 5 subclasses for each present. The so called 
‘gridtop’ topology is used along with Euclidean distance. 
Rejection criterion is d>10-6. The results are shown in Table I. 

TABLE I 
FINDING THE OPTIMAL MINIMAL LEARNING RATE FOR SOFM 

        αmin 

Recognition 
0.1 0.3 0.6 0.8 

rc, % 26.09 47.83 60.87 56.52 
rw, % 56.52 34.78 21.74 26.09 

rn, % 17.39 17.39 17.39 17.39 
 

The graphical representation of the results from Table I is 
given in Fig.4. 
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Fig.4. rc, rw, rn as functions of αmin for SOFM 

 
Given the above results we choose to use αmin=0.6 as an 

optimal value because the number of correctly recognized 
characters is maximal for it. Thus the next experiment 
concerns the radius of the neighborhood for fixed αmin – we 
decrease dmin from 1 to 10-5 by a factor of 10. Again our 
SOFM is trained for 10 epochs, 26 classes with 5 subclasses. 
The results are shown in Table II. 

TABLE II 
FINDING THE OPTIMAL NEIGHBOURHOOD DISTANCE FOR SOFM 

       dmin 
Recognition 

100 10-1 10-2 10-3 10-4 10-5 

rc, % 39.13 56.52 60.87 56.52 52.17 47.82
rw, % 60.87 26.09 21.74 26.09 30.43 34.78

rn, % 0.00 17.39 17.39 17.39 17.39 17.39
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The graphical representation of the results from Table I is 

given in Fig.4. 
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Fig.5. rc, rw, rn as functions of αmin for SOFM 

 
Now we have the optimal αmin=0.6 and dmin=0.01. How the 

number of epochs of training the SOFM affects the 
recognition process, for 26 classes with 5 subclasses, is shown 
in Table III and graphically in Fig. 6. Training time 
consumption order is as follows – for 10 epochs – a few 
minutes, for 100 – about an hour and for 1000 – more than 8 
hours. 

TABLE III 
INFLUENCE OF THE NUMBER OF EPOCHS FOR SOFM 

      Epochs 
Recognition 10 100 1000 

rc, % 60.87 73.91 82.61 
rw, % 21.74 21.74 17.39 

rn, % 17.39 4.35 0.00 
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Fig.6. rc, rw, rn as functions of number epochs for SOFM 

 

The results for the neocognitron using the same training and 
test data are shown in Table IV. The only parameter we 
change is the S-cell transfer function as seen. The values of 
the other parameters for this experiment are given in [5].  

TABLE IV 
RECOGNITION ACCURACY FOR THE NEOCOGNITRON 

      φ(.) 
Recognition 

Thresh ThreshLin Sigmoid

rc, % 34.75 54.50 65.50 
rw, % 23.00 23.75 34.50 

rn, % 42.25 21.75 0.00 

IV. CONCLUSION 

It is obvious that the SOFM is equivalent to the 
neocognitron concerning recognition accuracy when a 
reasonable amount of time is spent for training (2-10 epochs) 
and preliminary processed high quality test data is used (small 
noise levels, shifts, etc.). The last confirms the need and the 
important role of qualitative preprocessing. 

For both - learning rate and neighborhood distance for 
SOFM should be found appropriate values during training as 
they highly affect the final recognition accuracy. As 
neighborhood distance decreases and inclines to 0, the SOFM 
behaves itself more like a simple competitive neural network 
which is explainable by its working principle. 

As for the S-cell transfer function for the neocognitron it is 
visible that the sigmoid one is the best option from the three 
tested ones. In the other two cases the neocognitron drops 
behind SOFM as for the recognition accuracy. 

Depending of the circumstances both of the networks can 
be applicable in a complete handwriting recognition system.  
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