Ohrid, North Macedonia, 27-29 June 2019

Developing a B2C e-Commerce Graph Data Model
from a Relational Schema

Ilija Hristoski', Tome Dimovski’, and Violeta Manevska®

Abstract — The emerging NoSQL databases have capabilities
that traditional relational databases do not possess. In this paper,
we are focusing on NoSQL graph databases, and propose a
graph data model that corresponds to a generic traditional
relational database model found within the majority of today’s
B2C e-Commerce applications. The act of mapping relational
databases to graph databases provides a solid basis for carrying
out profound analyses of the implicit relationships among entity
types’ instances and gaining significant insights that cannot be
incurred otherwise.

Keywords — E-Commerce, Relational schema, Graph data
model, Mapping, Neo4;j.

1. INTRODUCTION

Nearly 50 years after Edgar F. Codd postulated the
mathematical principles of the relational data model back in
1970, relational databases are still playing the role of a main
workhorse in the contemporary digital landscape. There are
many reasons for such an observation, e.g. relational
databases are keeping data redundancy at a minimum; they are
transaction friendly and highly consistent during update
operations. Among major disadvantages of relational
databases, which include the necessity to rebuild relationships
with JOINs and other inexact techniques, their sensitivity to
changes is, perhaps, of the utmost importance. The fact that
relational databases are not designed to handle changes is
crucial, having minded the nature of today’s data, which is
more dynamic, more intense, more voluminous, more
unpredictable, more variable, and more diverse than ever
before. Moreover, relational databases are neither designed for
heterogeneous data, nor for scale and for mixed workloads,
which make them a mismatch for modern app development.

Nowadays it becomes quite clear that relational databases
cannot cope successfully with the challenges posed by today’s
data, and justifies what Vivek Kundra, the former CIO of the
U.S. Federal Government, said in 2009: “This notion of
thinking about data in a structured, relational database is
dead.”

Graph databases, on the other hand, belong to the family of
NoSQL databases; they address one of the great macroscopic
business trends of today: “leveraging complex and dynamic
relationships in highly connected data to generate insight and

"Tlija Hristoski is with the Faculty of Economics at the “St.
Kliment Ohridski” University in Bitola, 133 Gjorche Petrov St, 7500
Prilep, North Macedonia, E-mail: ilija.hristoski@uklo.edu.mk.

*Tome Dimovski and Violeta Manevska are with the Faculty of
Information and Communication Technologies at the “St. Kliment
Ohridski” University in Bitola, Partizanska St, 7000 Bitola, North
Macedonia.

competitive advantage” [1]. Unlike the relational databases,
which store data to efficiently store facts, graph databases
store both facts and the relationships among the facts, making
certain types of analyses more efficient and intuitive.
Emerging as a major driver of innovation during recent years,
graph databases have already exhibited many advantages over
relational databases, like storing large volumes of data that
might have little to no structure, sharing data across multiple
servers in the cloud, speeding the development, boosting the
horizontal scalability, demonstrating superior performances,
and supporting iterative algorithms and other data mining and
machine learning algorithms.

The paper is organized as follows. Section 2 provides an
insight into some of the most relevant research in this area. A
generic B2C e-Commerce relational schema, which is used as
a basis for this study, is presented in Section 3. In Section 4,
the mapping of the B2C e-Commerce relational schema into a
corresponding graph data model is described. Section 5
concludes.

II. RELATED RESEARCH

There is intense ongoing research in the area of mapping /
converting / transforming / migrating relational databases into
graph databases during recent years.

De Virgilio et al. propose a methodology for converting a
relational to a graph database by exploiting their schema and
the constraints of the source database. They also provide
experimental results that demonstrate the feasibility of their
approach and the efficiency of query execution against the
target database [2]. Bordoloi & Kaita propose a method for
transforming a relational database to a graph database model
by transforming dependency graphs for the entities in the
system into star graphs, which are then transformed into a
hypergraph model [3]. Wardani & Kiing propose a
methodology for mapping and converting relational models to
graph models without any semantic loss [4]. De Virgilio et al.
present R2G, a tool for automatic migration of relational
databases to a Graph Database Management System
(GDBMS) [5]. Recognizing the fact that identifying
correlations and relationships between entities within and
across different data sets (or databases) is of a great
importance in many domains, Lee et al. develop a
reconfigurable and reusable graph construction tool, named
Table2Graph, based on a Map-Reduce framework over
Hadoop, with an aim of constructing a graph-based model
from relational source databases [6]. Recently, Filho et al.
proposed some heuristics, aiming at mapping systematization
from relational model data to graph representation, in order to
provide support for an adequate choice of the graph model,
according to the type of analysis to be performed [7].

179

Ohrid, North Macedonia, 27-29 June 2019

III. B2C E-COMMERCE RELATIONAL SCHEMA

In order to achieve the goal of this study, as a starting point,
we use the generic B2C e-Commerce relational data model
published by Williams in 2009 [8]. The database model
consists of 14 tables, drawn from the following relational
schema:

CUSTOMER
(customer id, ...)

CUSTOMER PAYMENT METHOD
(customer_payment id, ..., customer_id*,
payment_method_code*)

REF PAYMENT METHOD
(payment_method_code, ...)

PRODUCT
(product id, ..., product_type_code*)

REF PRODUCT_TYPE
(product_type code, ..., parent_product_type_code*)

ORDER
(order _id, ..., customer_id*, order_status_code*)

REF _ORDER STATUS CODE
(order_status code, ...)

ORDER _ITEM
(order_item_id, ..., product_id*, order_id*,
order_item_status_code*)

REF_ORDER _ITEM_STATUS CODE
(order_item_status code, ...)

INVOICE
(invoice_number, ..., order_id*, invoice_status_code*)

REF_INVOICE _STATUS CODE
(invoice_status code, ...)

PAYMENT
(payment id, ..., invoice_number*)

SHIPMENT
(shipment id, ..., order_id*, invoice_number*)

SHIPMENT ITEM

(shipment id, order _item id)

In the above relational schema, non-key attributes are being
omitted, i.e. only table names, along with corresponding
primary and foreign keys are given, due to simplicity reasons.
Primary keys are bolded and underlined, whilst foreign keys
are italicized.

IV. MAPPING THE RELATIONAL SCHEMA INTO A
GRAPH DATA MODEL

Before transforming the relational database schema into a
graph database model, it is convenient to point out the process
of transformation, which can be carried out through a number
of steps [9-11]:

e Each entity table is represented by a label on nodes;

e Each row in an entity table becomes a particular node;

e Columns on those tables become node properties;

e Technical primary keys should be removed, whilst

keeping business ones;

e Unique constraints should be added for business

primary keys;

e Indexes should be added for frequent lookup attributes;

e Each foreign key should be replaced with a relationship
to the other table, and removed afterward from the
original table;

e Data with default values should be removed, there is no
need to store those;

e Data in tables that is denormalized and duplicated
might have to be pulled out into separate nodes to get a
cleaner model,;

e Indexed column names might indicate an array
property;

e Simple JOIN tables become relationships;

e Attributed JOIN tables become relationships with
properties.

Five tables in the original relational schema: CUSTOMER,
REF PAYMENT METHOD, CUSTOMER, REF ORDER
STATUS CODE, REF ORDER_ITEM STATUS CODE,
and REF INVOICE STATUS CODE, which, besides other
non-key attributes, does not include any foreign keys, but
solely a primary key, can be directly converted into nodes.
The names of these tables become node labels, whilst columns
on those tables become node properties (Fig. 1)

| REF_PAYMENT_METHOD |

payment_method
_code
+

CUSTOMER

customer _id

other non-key
attributes

+
other non-key
attributes

REF_INVOICE _STATUS CODE

invoice status
_code

+
other non-key
attributes

REF_ORDER_ITEM_STATUS_CODE

order_item

_status_code
+

other non-key

attributes

[REF_ORDER_STATUS_CODE

order_status
_code
+
other non-key
attributes

Fig. 1. Nodes coming out from the tables that do not include any
foreign keys

Semantic relations between tables in the relational schema
can be both identified and drawn from foreign keys, starting
from the table with a foreign key(s) and following the
relationship(s) to the table(s) where those foreign keys are
primary keys (Table 1).

180

Ohrid, North Macedonia, 27-29 June 2019

TABLEI
FINDING THE SEMANTIC RELATIONS BETWEEN TABLES

Logical link

Semantic relation (foreign key)

CUSTOMER PAYMENT METHOD

— BelongsTo —

REF PAYMENT METHOD
CUSTOMER PAYMENT METHOD

— IsUsedBy - CUSTOMER

ORDER - IsPlacedBy - CUSTOMER
ORDER - HasOrderStatus —
REF_ORDER_STATUS CODE
INVOICE - IslssuedFor - ORDER
INVOICE - HaslnvoiceStatus —
REF_INVOICE_STATUS_CODE
PAYMENT - IsMadeFor — INVOICE
SHIPMENT - CorrespondsTo - ORDER
SHIPMENT - IsCoveredBy — INVOICE

PRODUCT - IsOf —»

payment
_method_code

customer_id

customer id

order_status
_code

order id

invoice_status
_code

invoice number
order id
invoice number

product_type

REF_PRODUCT _TYPE _code
ORDER_ITEM — RefersTo - PRODUCT | product id
ORDER ITEM - IsPartOf - ORDER order id
ORDER _ITEM .

— order item

— HasOrderltemStatus —
REF_ORDER_ITEM STATUS CODE

REF_PRODUCT _TYPE - IsSubtypeOf —
REF PRODUCT TYPE

_status_code

product_type
_code

The logical links like BelongsTo, IsUsedBy, IsPlacedBy,
etc., are implemented through the mechanism of foreign keys,
but they are not obvious, because neither the existence nor the
meaning of such semantic relations is not explicitly coded in
the relational database schema. After identifying the semantic
relations originating from the foreign keys, the latter ones are
being removed from the tables. Those tables also become
nodes, and the semantic relations originating from these
become relations pointing towards corresponding nodes in a
graph data model (Fig. 2).

[REF_ORDER_STATUS_CODE | [CUSTOMER |

order_status
_code

customer_id

+
other non-key
attributes

other non-key
attributes

HasOrderStatus

IsPlacedBy

order_id

o

other non-key
attributes

Fig. 2. Transforming foreign keys of the table ORDER into relations
to nodes CUSTOMER and REF_ ORDER_STATUS CODE

The table REF_ PRODUCT _TYPE is a specific one since it
contains a foreign key that references its own primary key.
This is a recursive relationship of cardinality 1:M. In this
particular case, the foreign key transforms into a semantic
relation IsSubtypeOf between two nodes with the same label,
REF PRODUCT TYPE, which represent two distinct
product types (Fig. 3).

[REF_PRODUCT _TYPE |

product type
_code

other non-key

attributes

REF_PRODUCT TYPE

product_type
_code
+
other non-key
attributes

IsSubtypeOf

Fig. 3. Transforming the foreign key parent_product_type_code* of
the table REF_ PRODUCT _TYPE into a semantic relation
I1sSubtypeOf

Finally, the table SHIPMENT ITEM has been derived
from an M:N relationship between the entity types
SHIPMENT and ORDER_ITEM in the original E-R diagram.
Since it represents a simple JOIN table without any additional
attributes, it should not be represented as a node, but rather as
a relationship, starting either from the node SHIPMENT to the
node ORDER ITEM, or vice-versa. Fig. 4 displays this
relationship, named Includes (Fig. 4).

SHIPMENT

shipment_id

Includes

+

other non-key
attributes

ORDER_ITEM

order_item _id

+
other non-key
attributes

Fig. 4. Transforming the table SHIPMENT ITEM into a semantic
relation Includes between the nodes labeled SHIPMENT and
ORDER_ITEM

The complete B2C e-Commerce graph data model has
been implemented in Neo4j using the Cypher query language
(CQL) and is given in Fig. 5. When it comes to Neo4;j, it is
worth pointing out that the Neo4j ETL (Extract-Transform-
Load) tool allows one an automated translation of both
relational data structures and actual data stored in an existing
relational database into a graph data model. It includes a 3-
step process that allows the user to specify a relational
database via a JDBC setup, then to edit the data model

181

L} =
0]

§-®

2019

Ohrid, North Macedonia, 27-29 June 2019

mapping that the tool creates for the graph, and finally, to
import all of the data itself into a Neo4j database.

c Aigy,
—2ng
Fe &

E

CORRESPONDS_TO(1)
. -’e
-S‘,n;"_b&

REF_ORDER_ITEM_STATUS_CODE(1)

8 5 Y |
H A v f
.
EI | "“"’%% g
3 : W g
: S
2

:

|
9

"ﬁ-— e - .._._. :_._
ol '@’ = ™
ﬁu"iﬁ &‘C‘-':?a,.
%3
’kr,a

CUSTOMER_PAYMENT_METHOD{1)

15_USED_BY(1)
L
Displaying 13 nodes, 15 relationships

$ match {(n) return n

B |

Fig. 5. The resulting B2C e-Commerce graph data model

V. CONCLUSION

The resulting graph data model differs from the original
relational data model in several aspects: (1) There are no
NULLSs, i.e. non-existing value entries/properties are not
present; (2) The graph model has no JOIN tables; (3) The
graph model has no artificial primary keys or foreign keys; (4)
Relationships are more detailed; (5) There is no need for
intermediary tables, because they are all translated directly
into relationships. The resulting graph data model captures the
relationships among entity types in a highly intuitive and
simplified manner because it is more expressive than any
other corresponding relational data model. It provides a
substantial basis for conducting advanced data analytics in a
time-efficient manner, like e-Commerce recommendations,
personalizations, security, real-time fraud detection, etc.

REFERENCES

[1] I Robinson, J. Webber and E. Eifrem, Graph Databases: New
Opportunities for Connected Data, Second Edition, O’Reilly
Sebastopol, CA, USA, 2015.

[2] R. De Virgilio, A. Maccioni and R. Torlone, “Converting
Relational to Graph Databases”, First International Workshop
on Graph Data Management, Experience and Systems
(GRADES 2013), Conference Proceedings, New York, NY,
USA, pp. 1-6, 2013.

[3] S. Bordoloi, B. Kalita, “Designing Graph Database Models from
Existing Relational Databases”, International Journal of
Computer Applications, vol. 74, no. 1, pp. 25-31, 2013.

[4] D. W. Wardani, J. Kiing, “Semantic Mapping Relational to
Graph Model”, 2014 International Conference on Computer,
Control, Informatics and Its Applications (IC3INA 2014),
Conference Proceedings, Bandung, Indonesia, pp. 160-165,
2014.

[5] R. De Virgilio, A. Maccioni and R. Torlone, “R2G: a Tool for
Migrating Relations to Graphs”, 17th International Conference
on Extending Database Technology (EDBT 2014), Conference
Proceedings, Athens, Greece, pp. 640-643, 2014.

[6] S. Lee, B. H. Park, S-H. Lim and M. Shankar, “Table2Graph: A
Scalable Graph Construction from Relational Tables Using
Map-Reduce”, 2015 IEEE First International Conference on Big
Data Computing Service and Applications, Conference
Proceedings, pp. 294-301, Redwood City, CA, USA, 2015.

[7] S. P. L. Filho, M. C. Cavalcanti and C. M. Justel, “Graph
Modeling from Relational Databases”, 2017 XLIII Latin
American Computer Conference (CLEI 2017), Conference
Proceedings, Cordoba, Argentina, pp. 843—842, 2017.

[8] B. Williams, “A Data Model for e-Commerce”, 2009. URL:
http://www.databaseanswers.org/data_models/e_commerce/
index.htm (Accessed March 30, 2019)

[91 M. Hunger, R. Boyd and W. Lyon, The Definitive Guide to
Graph Databases for the RDBMS Developer, e-Book, Neo
Technology, 2016. URL: https://neo4j.com/whitepapers/rdbms-
developers-graph-databases-ebook/ (Accessed April 02, 2019)

[10] M. Hunger, From Relational to Graph: A Developer’s Guide,
e-Book, DZone, Inc., 2016. URL: https://dzone.com/storage/
assets/2054302-dzone-refcardz-23 1-neo4j.pdf (Accessed April
2,2019)

[11] S. Yang, How to Map Relational Data to a Graph DB in Four
Steps, e-Book, TIBCO Software Inc., Palo Alto, CA, USA,
2018. URL: https://www.tibco.com/sites/tibco/files/resources/
sb-graph-database-final.pdf (Accessed April 4, 2019)

182

	_Proceeding_ICEST_2019_1_cover_committees2
	_Proceeding_ICEST_2019_2_contentMS1
	_Proceeding_ICEST_2019_3_allpapersLABELSfooter_1

