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Abstract. Gene regulatory networks are complex networks composed of nodes 
representing genes, transcription factors, microRNAs and other components or 
modules and their mutual interactions represented by edges. These networks 
can reveal and depict the fundamental gene regulatory mechanisms in the cells. 
In this paper we compare the obtained results of gene regulatory networks 
inference from gene expression microarray data. We have used dynamic 
Bayesian networks, Boolean networks and graphical Gaussian models as 
models for network inference. We applied three different size gene expression 
datasets simulated using a simple autoregressive process. After network 
inference, we compared the values of the area under ROC curve (AUC) as a 
validation measure. Some directions for further improved approach for GRNs 
reconstruction which will include prior knowledge are proposed at the end of 
this paper. 
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1   Introduction 

The complex networks composed of genes, proteins and other components regulate 
the functions and development of the cells through their interactions. The gene 
regulatory networks (GRNs) provide an understandable view for gene regulatory 
mechanisms and can uncover the reasons for many diseases. GRNs components are 
nodes which represent the genes, metabolites, proteins or modules, and edges which 
correspond to the direct and indirect interactions between nodes. Genes as key 
components in the GRNs are DNA segments which present fundamental heredity 
units of every living organism. 

The central dogma in molecular biology is presented by two processes: 
transcription and translation. In the process of transcription a gene is transcribed into 
mRNA and after that proteins are produced by translation. When the protein is 
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synthesized the corresponding coding gene is expressed. The gene expression levels 
correspond to the approximate number of produced RNA copies from the 
corresponding gene, which means that gene expression is related to the amount of 
produced proteins. The microarray technology provides gene expression data as an 
observation of gene expression under specific experimental conditions or different 
time points [8]. 

The inferring or reconstructing of gene regulatory interactions from experimental 
data is called GRNs inference. There are many models for inferring of GRNs such as 
Boolean networks, Bayesian networks, dynamic Bayesian networks, graphical 
Gaussian models, Petri networks, linear and nonlinear differential and difference 
equations systems, information theory approach, state space models and fuzzy logic 
models. 

The remainder of this paper is organized as follows. In Section 2 we describe 
Boolean networks. In the third section we present the graphical Gaussian models and 
their assumptions and usage in the networks inference. We also describe the partial 
correlation coefficients and their significance for network inference. Bayesian 
Networks and dynamic Bayesian networks (DBNs) are presented in the following 
section. The area under ROC curve as a validation measure is described in Section 5. 
In Section 6 we describe the simulation of artificial gene expression data used for 
GRNs inference and the obtained inferred networks and the AUC values are shown, 
too. The concluding remarks are given in the last section. 

2   Boolean Networks 

Boolean Networks model is a simple model for GRNs inference, consisting of a set of 
nodes and edges. The nodes represent genes whereas the edges between the nodes 
correspond to the gene interactions. In Boolean networks, gene expression levels are 
discretized and presented by two levels states. The genes which have expression 
levels above a certain threshold are represented by state 1 and the other genes by 
state 0. 

The graph representing a Boolean network gives information about the connection 
between genes, but it is not sufficient for understanding the all dependencies between 
genes. The main goal of the reverse engineering in Boolean networks is finding a 
Boolean function of every gene in the network, so that discretized values of gene 
expression can be explained by the model. But, the small changes in the gene 
expression levels cannot be covered by two levels discretization, which leads to 
information loss. Another shortcoming of Boolean networks is the super-exponential 
number of all possible networks depending on the number of genes n and it is equal to 

. 
n22
REVerse Engineering Algorithm (REVEAL) based on Boolean networks has been 

introduced by Liang et al. (1998) [9]. This algorithm constructs a Boolean network of 
given expressed gene data by setting the gene in-deegree. If n is the number of nodes 
and k is the value of in-degree of the genes, then the number of all possible networks 
can be computed by the Eq. 1: 
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REVEAL extracts minimal network structures using the mutual information 
approach from the state transition tables of the Boolean network. 

3   Graphical Gaussian Models 

Graphical Gaussian models (GGMs) are commonly used as a method for GRNs 
reconstruction based on gene expression data and they are very computationally 
efficient [3]. GGMs as graphical probabilistic models can identify conditional 
independence relations among the nodes. They make an assumption that the input 
gene expression data follow a multivariate Gaussian distribution [6]. 

The nodes represent genes, and the edges represent conditional dependence 
relations between nodes. The absence of an edge between two genes means that the 
corresponding genes are conditionally independent given other genes in the model. 

Let  be the input gene expression data matrix with G columns, corresponding to 
the number of genes, and with N rows which correspond to the number of samples 
(time series data points or other experimental conditions) 

Υ

Υ fo re ( )=μ
is the m an ve
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variance terms for gene i. The estimation of the covariance matrix of the data 
distribution is a base for the GGMs inference. 

riance par
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ijρ
First, in the GGM inferencel, to make a reliable estimation of the partial correlation 

matrix ( )~~
=  is required Ρ [4]. This matrix is related to the inverse matrix of the 

covariance matrix Σ . The straightforward estimator is given by the following Eq. 2: 
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where  
( ) 1ˆˆ −Σ=ijωˆ =Ω

       
(3) 

rThe partial correlation coefficients ~ , which describe the correlation between 

nodes/genes  and  conditional dependent on all other nodes in the network, are 
measures of the direct interactions among nodes/genes 

iY jY
[5]. Partial correlation between 

two genes measures the degree of correlation remaining after removing the effects of 
the other genes which differs from Pearson correlation coefficients [1] [6]. 

The above mentioned procedure is appropriate when N is larger than the number of 
genes G, otherwise the covariance matrix is not positive-definite and its inverse 
matrix cannot be found. In microarray data, the sample size N is much smaller than 
the number of genes G. For that reason it is suggested to use a shrunk estimate of the 
covariance matrix. The goal is to construct well conditioned positive definite matrix, 



62 Ristevski, Loshkovska: A Comparison of Models for Gene Reg. Net. Inference 

 

M. Gusev (Editor): ICT Innovations 2010, Web Proceedings, ISSN 1857-7288 
© ICT ACT – http://ictinnovations.org/2010, 2010 

so that the matrix can be inverted. If λ is a shrinkage coefficient so that 10 ≤≤ λ , 
then shrunk covariance matrix *Σ  is computed by following Eq. 4 

ST )1(* λλ −+=Σ         (4) 

where  is the estimated empirical covariance matrix. The shrinkage parameter λ 
is chosen to minimize the mean-square error and it is determined analytically given by 
Eq. 5.  
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After computing the partial correlation coefficients ijr~ , the distribution of ijr~  is 

checked and the edges with significantly small values of ijr~  are removed from the 
network [2]. 

The second stage of the GRNs inference is model selection – assigning statistical 
significance to the edges from the GGM network. 

4   Bayesian Networks 

Bayesian networks (BNs) are a special type of graph model defined as a triple 
),,( θFG , where G denotes the graph structure, F is the set of conditional probability 

distributions, and θ is the set of parameters for the graph structure [10]. The structure 
of the graph G consists of a set of n nodes x1, x2, ..., xn and a set of directed edges 
between the nodes. The nodes correspond to the random variables and the directed 
edges show the conditional dependences between the variables (genes). 

A directed edge from the node X to the node Y is denoted as X→Y which means 
that X is a parent of Y denoted as pa(Y). Edges and nodes and edges together have to 
create a directed acyclic graph (DAG). 

The joint probability distribution is given by Eq. 6: 

( ) ( )∏
=

−=
n

i
ii Gxxpxp
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If pai denotes the parent nodes of the node xi which means that the state of each 
variable xi depends on the states of its parent pai: 

( ) (∏=
n

ii Gpaxpxp ,,θ )
=i 1

     (7) 

BNs can deal with noisy and stochastic nature of gene expression data and with 
incomplete knowledge about the system. The small number of data points (samples) 
and large number of genes are common problems for BNs learning. Another 
disadvantage is that feedback loops cannot be captured, although they exist in the 
GRNs. BNs represent probabilistic relations between genes at the same time and they 
cannot represent the time relationships between variables 
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To overcome these drawbacks of BNs, dynamic Bayesian networks (DBNs) are 
used to model gene regulations. DBNs can deal with stochastic variables, time series 
gene expression data, feedback loops, missing values, hidden variables and can 
include prior knowledge [11]. The hidden nodes (variables) can capture effects that 
cannot be directly measured in a microarray experiment. 

If  represents the i-th node at time point t, the joint probability distribution is 
given by Eq. 8: 

i
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The GRNs inference is followed by structure and parameter learning of the BNs 
from training data D [7]. For given data D, the aim is to find posterior distribution of 
the network structure M, and then from this distribution the structure M* which best 
fits the data should be found according to Eq. 9: 

)}|({maxarg* DMPM M=     (9) 
For an optimal network structure M* and given data, it is required to find posterior 

distribution of parameters q by Eq. 10: 

      (10) )},|({maxarg ** DMqPq q=
The BNs learning is NP-hard task and thus BNs and DBNs are appropriate for 

inference of small networks [12] because the number of DAGs G(n) super-
exponential depends on the number of nodes n and it is given by the Eq. 11: 
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In Table 1 the number of all possible DAGs as a dependence on the number of the 
graph nodes is shown. 
 
Table 1. A table survey of the number of all possible DAGs depending on the number of nodes. 

 

number of nodes number of all possible DAGs 

4 543 

5 29 281 

6 3 781 503 

8 783 702 329 343 

10 4,175099 ·1018 

15 2,377253 ·1041 

20 2,344880 ·1072 

22 1,075823 ·1087 

24 9,435783 ·10102 



64 Ristevski, Loshkovska: A Comparison of Models for Gene Reg. Net. Inference 

 

M. Gusev (Editor): ICT Innovations 2010, Web Proceedings, ISSN 1857-7288 
© ICT ACT – http://ictinnovations.org/2010, 2010 

5   Validation of Inferred GRNs 

To validate obtained results, the inferred network should be assessed in comparison 
with the referent network. Commonly used criteria for validation are the Receiver 
Operator Characteristics (ROC) curves and the area under ROC curve (AUC). The 
ROC curve is a chart of the ratio between sensitivity and (1-specificity), where 
sensitivity corresponds to a proportion of the actual positives edges which are 
correctly identified whereas specificity is proportion of negatives edges which are 
correctly identified [13] [15]. 

 To facilitate the model validation , instead of ROC curve the AUC can be used. 
The AUC is the area covered by the ROC curve with the x-axis. Bigger value of AUC 
means better inferred network. The AUC is calculated by integrating the area bounded 
by the ROC curve and the x-axis [14]. 

6   Simulated Data and Results 

To infer GRNs and then to validate above described models: Boolean networks, 
GGMs and DBNs, we have simulated artificial gene expression data by a simple first 
order autoregressive process given by Eq. 12: 

)()1()( tBtAxtX ε++−=      (12) 
where ε(t) is a vector distributed by zero-centered multivariate Gaussian 

distribution with diagonal variance matrix. 
We have obtained three different size datasets. The first dataset Data1 consists of 

simulated gene expression data for 5 genes and 50 time points. The dataset Data2 
corresponds to 10 genes and 50 time points, and the number of genes in the third 
dataset Data3 is 15 measured in 100 time points. 

The true referent networks and the inferred networks for the three datasets Data1, 
Data2 and Data3 are illustrated on Fig. 1-Fig.3. The values for AUC as validation 
criteria are shown tabular on Table 2. These AUC values show that for smaller 
datasets, Boolean networks model has the best performance in comparison to the 
GGMs and DBNs. For larger datasets GRNs inference performed by GGMs 
overcomes the other models. 

 
Table 2. A comparison of the AUC values for three different inference models: GGMs, 

Boolean network and DBNs. 

 

network inference model Data1 Data2 Data3 

GGMs 0.65 0.63 0.57 

Boolean networks 0.94 0.56 0.46 

DBNs 0.29 0.15 0.51 
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c) b) 

Fig. 1. True and inferred networks a) inferred Boolean network from Data1 b) reconstructed 
GRNs by GGMs and c) the true referent network corresponds to the Data1. 
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a) 

b) 

Fig. 2. True and inferred network a) the true referent network corresponds to the Data2 b) 
inferred Boolean network from Data2. 
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Fig. 3. True and inferred network a) the true referent network corresponds to the Data3 b) 

inferred Boolean network from Data3. 

a) 

b) 

7   Conclusions 

The presented AUC values obtained by GRNs inference using different models and 
datasets have shown that for datasets containing time series for larger number of 
genes, GGMs surpass the other network inference models: Boolean networks and 
DBNs. Only in the case where time series are for small number of genes (in our 
dataset - 5 genes) the Boolean network model has better inference performance 
compared to GGMs and DBNs, whereas DBNs model has shown worst inference 
properties. In accordance to these results we suggest using of GGMs results as prior 
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knowledge for improved approach for GRNs inference whereas the second inference 
stage is Markov Chain Monte Carlo (MCMC) simulation method to reconstruct more 
reliable GRNs. 
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