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Abstract. In this article, I present the biological backgrounds of microarray, ChIP-chip and ChIP-
Seq technologies and the application of computational methods in reverse engineering of gene
regulatory networks (GRNs). The most commonly used GRNs models based on Boolean networks,
Bayesian networks, relevance networks, differential and difference equations are described. A novel
model for integration of prior biological knowledge in the GRNs inference is presented, too. The
advantages and disadvantages of the described models are compared. The GRNs validation criteria
are depicted. Current trends and further directions for GRNs inference using prior knowledge are
given at the end of the paper.
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1 Introduction

Many biological, physiological and biochemical molecular processes occur simultane-
ously in the cells. Regulation of these processes is performed by inherited information
contained in the organisms genome. Inference of the mutual interactions between nu-
merous components of biological systems based on available experimental data on DNA,
RNA, proteins and metabolites interactions is needed for clearer representation and under-
standing of the regulatory mechanisms. These components and their mutual interactions
compose complex networks named as gene regulatory networks (GRNs). There are two
approaches for modeling of GRNs [1]:

• Mechanistic (or physical) networks, which use data from protein-DNA and protein-
protein interactions and therefore they are usually dubbed transcription or protein
networks. The goal of these static networks is to uncover molecular interactions on
physical level.

• Influence networks, which refer to the reconstruction of GRNs based on gene ex-
pression data and the inferred networks refer to gene-gene interactions.
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Fig. 1. Projection of GRNs in different spaces [2].

The GRNs structure is depicted by graph consisted of nodes representing the genes,
proteins, metabolites, their complexes or even modules and edges which represent di-
rect or indirect interactions between nodes. Proteins and metabolites appear as hidden
variables and GRNs are inferred only from gene expression data as observable variables.
These hidden variables can model unobserved effects that cannot be measured. Fig. 1
presents the projection of interactions from the space of metabolites and proteins in genes
space. Dashed lines represent gene interactions and the full lines represent the interactions
among genes, proteins, metabolites and their complexes [2].

This paper systematizes the different inferring GRNs models such as Boolean, Baye-
sian, dynamic Bayesian and relevance networks and other models, and compares their
advantages and disadvantages.

This article is organized as follows. In Section 2, the biological and experimental
backgrounds of the gene regulation are presented. In Section 3, the computational back-
grounds of the inference of GRNs are described. Section 4 is devoted to description of
Boolean networks, Bayesian networks and dynamic Bayesian networks, differential and
difference equations system models and association networks and their usage for GRNs
inference. In addition, several other models are briefly described in this section. Current
trends and a new-proposed model for GRNs inference by integration of prior knowledge
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is described in Section 5. Section 6 describes the commonly used validation criteria for
validation of the GRNs models. In Section 7, GRNs models comparison based on several
different attributes is shown. Finally, in Section 8, the concluding remarks and future
works in the GRNs inference are given.

2 Biological and experimental backgrounds

Genes are fundamental physical and functional inheritance units of every living organism.
The coding genes are templates for synthesis of proteins. Other genes might specify RNA
templates as machines for production of different types of RNAs.

The process in which DNA is transcribed into mRNA and proteins are produced by
translation represents the well-known central dogma in molecular biology. The first stage
is transcription, then the second stage – translation of mRNA into a sequence of amino
acids that compose the protein. When a protein is produced, the corresponding coding
gene is expressed.

The gene expression levels indicate the approximate number of produced RNA copies
from corresponding gene, which means that gene expression level corresponds to the
amount of produced proteins. DNA microarray technology is used to obtain gene expres-
sion data experimentally.

One of the most important regulatory functions of proteins is transcription regulation.
Proteins, which bind to DNA sequences and regulate the transcription of DNAs and
gene expression, are called transcription factors (TFs). TFs can inhibit or activate gene
expression of the target genes [3].

Besides gene expression data, other data such as protein-DNA, protein-protein interac-
tion data and microRNAs should be considered for revealing gene regulatory mechanisms.

Only a small part of RNAs is coding RNAs whereas the bigger part from genome of
eukaryotes is transcribed into non-coding RNAs. In the last few years, several small non-
coding RNAs such as microRNAs and siRNAs are revealed [4]. The length of nucleotide
thread in microRNAs is about 18–25 nucleotides [5]. MicroRNAs cause transcription
cleavage or translation repression by connecting to their target mRNA [6]. MicroRNAs
regulate expression by more than 30% of coding genes [7, 8]. Beside TFs, microRNAs
are in mutual interaction with more cis-regulatory elements. Similarly to TFs, genes also
contain binding sides for other TFs that may be targeted by microRNAs. Thus, the mutual
influence between microRNAs and TFs makes microRNAs important components in the
gene regulation.

They might have activate or inhibitory effect on gene expression, although earlier
it was supposed that they might have only the role of inhibitors. MicroRNAs have an
important role in many diseases such as cancer, cardiovascular, neurological, rheumatic,
infectious and metabolic diseases [7–10]. Ripoli et al. had proposed fuzzy logic approach
to reveal microRNAs role to gene expression regulation [11].

To discover the transcription factor binding sites (TFBSs) locations on the genome for
particular proteins and to reveal protein-DNA interactions, chromatin immunoprecipita-
tion (ChIP) is used [12]. ChIP-chip technology uses ChIP with hybridization microarrays
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(chip) to identify the protein binding sides and their locations throughout the genome. In
ChIP-chip technology, short DNA sequences as probes are used. A population of immuno-
precipitation – enriched DNA fragments is produced and enrichment of each probe from
produced population is measured [13]. ChIP-Sequencing (ChIP-Seq) technology, unlike
ChIP-chip technology, uses secondary sequencing of DNA instead of microarray [12].

The integration of abovementioned different types of biological data can significantly
improve the inference of GRNs [14].

3 Computational backgrounds of GRNs inference

Theoretical studies of GRNs have started in the 1960s. The appearance of experimen-
tal technologies for studying mechanisms that regulate gene expression such as DNA
microarrays, ChIP-chip and ChIP-Seq has provided large amounts of gene expression,
protein-protein and protein-DNA interaction data. Because the experimental wet-lab tech-
nologies cannot measure mutual influences among all genes from one organism’s genome
simultaneously, computational methods are applied to infer and reveal mutual gene inter-
actions.

In the past decade, several models for GRNs inference have been developed, based
on the basic reverse engineering methods. However, these models work only with certain
data types and inferred networks do not largely match the real regulatory mechanisms.
This shortcoming is a motivation for developing of new models that can include prior
knowledge and would be able to integrate heterogeneous data. Such inferred GRNs could
depict gene regulatory mechanisms more accurately.

Numerous models such as Boolean networks, Bayesian networks, dynamic Bayesian
networks, graphical Gaussian models, Petri networks, linear and nonlinear differential
and difference equations, information theory approach, state space models, fuzzy logic
models and many other models are used to reconstruct GRNs.

Finding more accurate and reliable GRNs structures from gene expression data is
a problem of machine learning known as structure learning of graph models. GRNs
learning is a big challenge that merges learning techniques from artificial intelligence
with statistics, bioinformatics and functional genomics.

By GRNs inference, several properties of GRNs should be considered such as sparse-
ness, scale-free topology, modularity and structurality of inferred networks [1].

The GRNs should be sparse. In other words, a limited number of genes regulates
genes. Some genes in the network called “hubs” can regulate many genes, i.e. the out-
degree of the nodes is not limited. Another important feature is the scale-free GRNs
topology. Scale-free networks have the power distribution function of the connectivity
degree [15]. This property provides the robustness of the networks regarding the random
topology changes. Structures with small connectivity follow the regulatory hierarchy.
The structurality allows network decomposition into basic modular elements composed
of several genes, called network motifs [1]. The network modularity refers to the existence
of clusters of highly coexpressed genes and genes with similar function.
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4 Gene regulatory networks models

4.1 Boolean networks

One of the simplest models of GRNs is the model based on Boolean networks. The
genes are represented by nodes and the edges between nodes representing the interactions
between genes. In Boolean networks, gene expression levels are discretized and presented
by two-states levels. The state of the genes that have expression levels above a certain
threshold is 1, otherwise 0.

The wiring diagram shown in Fig. 2(a) presents connection between genes, but it
is not sufficient for understanding logical dependencies between genes. The aim of the
reverse engineering in Boolean networks is to find Boolean functions of every gene in the
network, so discretized values of gene expression can be explained by the model, shown
in Fig. 2(b). Another way of representing Boolean networks is by state transitions table,
presented in Fig. 2(c).

(a) (b)

(c)

Fig. 2. A Boolean network represented by: (a) a wiring diagram, (b) Boolean functions and
(c) a state transition table.
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The small changes in gene expression time series data cannot be covered by two-level
discretization, because it leads to information loss. Thus, inferred regulatory networks
can be unrealistic. Another shortcoming of Boolean networks is the super-exponential
number of all possible networks. If n is the number of genes, then the number of Boolean
functions is super-exponential and equal to 22

n

.
Several extended models based on Boolean networks have been proposed. A REVerse

Engineering ALgorithm (REVEAL) constructs a Boolean network of given expressed
gene data by setting the in-degree value of genes k [16]. The algorithm extracts minimal
network structures by using the mutual information approach from the state transition
tables of the Boolean network. If n is the number of nodes, the number of all possible
networks can be calculated by: (

22
k n!

(n− k)!

)n
. (1)

REVEAL can be applied to gene expression data, discretized on multiple discretiza-
tion levels. On the other hand, multiple discretization levels increase the number of possi-
ble state transitions. Thus, the number of all possible networks will be much greater than
the number of networks derived from two level Boolean networks and it is calculated
by Eq. (1). REVEAL has better inference capabilities when the value of in-degree k
is smaller. For greater in-degree k, it is necessary to perform parallel processing or to
increase the efficiency of the search space of possible networks [16].

The models based on Boolean network simplify the structure and dynamics of gene
regulation. They are deterministic, i.e. the state space is limited and that the networks
reach the steady state or enter into dynamic attractor [17]. The inferred networks provide
only a quantitative measure of gene regulatory mechanisms.

Another model is the probabilistic Boolean networks model [18]. This model can be
considered as a model composed of several Boolean networks, which work simultane-
ously, but all networks share information about the whole system states. When a network
transits to a next state, the remaining networks are synchronized.

4.2 Bayesian networks

Bayesian networks (BNs) are among the most effective models for GRNs inference.
A Bayesian network is a special graph model defined as a triple (G,F, q), where G de-
notes the graph structure, F is the set of probability distributions and q is the set of param-
eters for F [19]. The graph structure G is consisted of a set of n nodes X1, X2, . . . , Xn

and a set of directed edges between nodes. The nodes correspond to the random variables
and directed edges show the conditional dependences between the random variables.

If there is a directed edge from the nodeX to the node Y , which is denoted asX → Y ,
then X is a parent of Y , denoted as pa(Y ), and Y is a child of X . If the node Z
can be reached by following a directed path starting from node X , then the node Z is
a descendant of X , and X is ancestor of Z. Nodes and edges together have to make
a directed acyclic graph (DAG). One directed graph is acyclic if there is no directed path
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X1 → X2 → · · · → Xn such as X1 = Xn, i.e. there is no pathway that begins and ends
at the same node.

The joint probability distribution of all nodes is calculated by the following equation:

P(X1, X2, . . . , Xn) =

n∏
i=1

P
(
Xi | pa(Xi)

)
. (2)

The multipliers from Eq. (2) are called local probability distributions. The factoriza-
tion of the joint probability distribution on multipliers provides its easier computation as
a product of simpler conditional probability distributions.

Structure and parameter learning accompany the inference of GRNs. The aim of
structure learning is finding network structure that fits best the real regulatory interactions.
However, in these networks also, there is a super-exponential dependence of the number
of possible DAGs on the number of nodes n. For a given network structure, the parameter
learning includes estimation of the unknown model parameters for each gene. This learn-
ing is performed by determining of the conditional dependencies between network nodes.
Because the BNs inference is an NP-hard problem, BNs are the most suitable when they
are applied to small networks consisted of tens to hundred genes [20].

It is possible to infer GRNs by BNs based on static, dynamic, discrete or continuous
gene expression data. If the node states are continuous, then network inference is more
difficult to carry out because of the additional complex calculations.

BNs can deal with stochastic nature of gene expression data and incomplete and noisy
data, too. The main problem with Bayesian networks learning is the higher number of
genes compared to the number of conditions and incapability to capture feedback loops
that exist in the real GRNs.

Friedman et al. in [21] have introduced a framework for discovering of interactions be-
tween genes based on microarray data using BNs. This method models each variable with
conditional probability distribution function related to other variables. In the proposed
approach, two comparative experiments are conducted for different probability distribu-
tions: multinomial distribution and linear Gaussian distribution. The main shortcomings
of this model are search heuristics performed without constraints on the search space and
non-using prior biological knowledge.

4.2.1 Dynamic Bayesian networks

BNs can represent probabilistic relations between variables without time lags and their
drawback is that they cannot deal with time series data [22]. However, interactions in the
real GRNs do not occur simultaneously, so there is a particular time lagging.

Another disadvantage of BNs is that they cannot represent real biological systems,
where exists mutual interactions among entities of biological systems, i.e. feedback loops
that exist among genes in the GRNs [23].

These shortcomings make BNs inappropriate for GRNs inference from time series
gene expression data, where it is necessary to include dynamic (temporal) features of gene
regulation. Thus, BNs are extended to model time features by introduction of dynamic
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Bayesian networks (DBNs). It is assumed that the changes in time series gene expression
data occur in a finite number of discrete intervals T . Let X = {X1, X2, . . . , Xn} is
a set of time dependent variables and Xi[t] is a random variable representing the value
of Xi at the time point t and 0 6 t 6 T . A DBN is a Bayesian network that contains
the T random vectors Xi[t] [24], an initial BN, a transition BN consisted of transition
DAG G→ and transition probability distribution P→:

P→
(
X[t+ 1] = x[t+ 1]

∣∣ X[t] = x[t]
)
. (3)

The joint probability distribution of the DBN is computed by:

P
(
x[0], . . . , x[T ]

)
= P0

(
x[0]

) T−1∏
t=0

P→
(
x[t+ 1]

∣∣ x[t]
)
. (4)

From Eq. (4) for each x at each time point t, the following is obtained:

P
(
x[t+ 1]x[0], . . . , x[t]

)
= P

(
x[t+ 1]

∣∣ x[t]
)
. (5)

Equation (5) denotes that the value of the variables at time point t depends on the
values of variables at the moment t − 1 and other information is not required, i.e. the
processes described by DBNs have Markov property [25].

For probabilistic inference in DBNs, the standard algorithm used in BNs inference
can be used, too. However, in the case of large time series data, DBNs learning becomes
too complex.

The DBNs are effective for GRNs inference when they are combined with other
types of biological data. An example for that is the proposed method that integrates gene
expression data with prior biological knowledge about TFBSs using DBNs and structural
EM algorithm [26].

It is shown that high order DBNs can be used for modeling of time lag gene regulatory
interactions based on time series gene expression data [27].

Figure 3 shows a DBN that describes cyclic regulation between gene 1 and gene 2,
although the graph does not contain obviously cyclic pathway.

In [28] a manner how DBNs can be applied for network inference and how they can be
learned; their relationship with the HMM, Boolean and stochastic Boolean networks and
DBNs with continuous variables is shown. The Boolean networks, linear and nonlinear
equations models can be considered as a special case of DBNs.

To overcome the high complexity needed for GRNs inference by DBNs, a model
with constraint of the potential regulators has been proposed. This constraint considers
those genes that have changes in gene expression level at the previous or at the same time
points regarding their target genes [29]. The proposed model uses the time lag of changes
in expression levels at regulator and target genes, which increases the accuracy of the
inferred networks. The time points of initial over- or under- regulation of the genes are
determined. The genes with changes in previous and current time points are denoted as
potential regulators to those genes with expression changes in the following time points.
In such a way, a subset of potential regulators for every target gene is chosen.
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Fig. 3. A GRN inferred by DBNs based on the input time series gene expression data for G
genes and N time points.

An effective algorithm for structure learning – extended K2 algorithm is proposed.
This algorithm called KN algorithm serves for learning of large BNs [30]. KN algorithm
introduces sorting of the genes to improve the efficiency of the large network inference.
The examination of the efficiency of the proposed algorithm is performed by carrying out
Monte Carlo simulation regarding to the greedy hill-climbing algorithm.

Another algorithm BOLS (Bayesian Orthogonal Least Squares) for reverse engineer-
ing of GRNs is proposed in [31]. This algorithm combines the orthogonal least squares,
second-order derivatives for network pruning and Bayesian model. The obtained network
is sparse, in which limited number of genes regulates every gene and the number of false
inferred edges is small.

4.3 Differential and difference equations models

The concentration of RNAs, proteins and other metabolites changes over time. Therefore,
to describe gene regulation, differential equations might be an appropriate model [32].
Ordinary differential equations (ODEs) systems use continuous gene expression data
directly and can easily model positive and negative feedback loops.

The main constraint of the model based on ODEs is the assumed constant or linear
changes of the concentration of regulators, although there are actually non-linear time
changes.

The dynamics of gene expression data is presented by the following differential equa-
tion:

dx

dt
= f(x, p, u, t), (6)

where x(t) = (x1(t), x1(t), . . . , xn(t)) is a vector of gene expression data for n genes at
time t, f is the function that describes the changes of variables xi depending on the model
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parameters p and external perturbations u. The aim of GRNs inference is to determine the
function f and parameters p given the measured signals x and u at the time t [1].

By solving Eq. (6), more solutions can be obtained, so the structure and parame-
ters identification of the model requires identification of the function f based on prior
knowledge or approximations. The function f can be linear or nonlinear. Although the
function f is nonlinear, for simplification, it is assumed that is linear and Eq. (6) is
transformed into the following equation:

dxi
dt

=

N∑
j=1

wijxj + biu, i = 1, . . . , N, (7)

where wij are elements of weight matrix W , and parameters bi determine the external
disturbance u to gene expression. This model also is called a model of regulatory matrices
composed of weight coefficients wij , which interpret the regulatory dependences. If the
weight coefficient has positive value, then the corresponding gene has activating role and
if the weight coefficient is negative, then that gene has the role of inhibitor. If the weight
coefficient value is zero, then genes do not interact mutually. In the linear models, the
inference from small number of samples is easier to carry out.

The identification of the function f and the parameters in the nonlinear models is
difficult because the number of samples in gene expression data is smaller than the number
of genes and finding the numerical solutions is more difficult.

One way to model the changes of gene expression is by S-systems with activating and
inhibitory components, described by:

dXi

dt
= αi

N∏
j=1

X
gij
j − βi

N∏
j=1

X
hij

j , (8)

where αi and βi are positive constants and hij and gij are kinetic exponents [1]. In these
models, there are many parameters whose identification requires carrying out numerous
experiments, and therefore often approximations are made by differential equations.

An optimized model for GRNs inference that uses known biological prior knowledge
from available databases for genome, proteome, transcriptome and scientific publications
has been proposed in [33]. This model is based on differential equations, from which
particular solutions are obtained by singular values decomposition. The obtained result is
optimized using mathematical programming.

One special case of differential equations system is the model of pairwise linear
differential equations, proposed in [34]. This model is based on the assumption that the
gene regulation can be represented by pairwise linear equations. The model uses gene
expression data and neglects posttranscriptional regulation.

Beside ODEs, difference equations model for GRNs inference is used, too. Unlike
the differential equations models that deal with continuous variables, the variables in the
difference equations model are discrete. Discretization of the gene expression data leads to
information loss [32]. However, difference equations are more suitable when time series
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gene expression data are available. The changes of gene expression data are described by
the following equation:

xi(t+ ∆t)− xi(t)
∆t

=

N∑
j=1

wijxj(t) + biu, i = 1, . . . , N. (9)

Difference equations model can be reduced to a system of linear algebraic equations,
which can be solved by linear algebra methods [1].

4.4 Association networks

Association networks (or relevance networks) are static networks that can describe the
possible structure of the GRNs. They can be applied for steady-state and time series gene
expression data. Association networks are represented by undirected graph. If two genes
are connected by an edge, then it is not possible to determine which gene is regulated
and which one is regulating. To determine which genes are coexpressed and between
which genes should be an edge, it is necessary to apply similarity metrics such as Pearson
coefficient or mutual information and additionally to set a threshold. The higher the
threshold is, the sparser inferred GRN is.

Although the relevance networks do not determine the directions of the edges in the
networks, they are suitable for inference of large GRNs because of their low computa-
tional complexity [1]. The directions of the regulations can be determined by compu-
tation of the similarity between genes and their possible regulators and with additional
knowledge for TFs.

Proposed algorithm ARACNE is based on mutual information between gene expres-
sion data [35]. It defines the edges in the network as statistical dependences by which
the directed regulatory interactions using data for TFs and their TFBSs can be identified.
Using ARACNE, the number of falsely predicted gene interactions in the networks re-
duces significantly. The complexity of this algorithm is O(N3 + N2M2), where N is
the number of genes, and M is the number of samples. The low complexity makes this
algorithm to be suitable for inference of large GRNs [35].

Graphical Gaussian models (GGMs) use partial correlation coefficients to determine
the conditional dependencies between genes and can determine directed and undirected
edges in the network [36]. GGMs can distinguish direct or indirect interactions between
genes, unlike the correlation networks where the edges present correlation between genes.

Let X is a gene expression data matrix with n rows and p columns, where n is the
number of experimental conditions and p is the number of genes. The data from the matrix
X are assumed to follow the normal distribution NP (µ,Σ), where µ = (µ1, . . . , µp)

T

is the vector of means and Σ = (σij)16i,j6p is a positive definite covariance matrix.
By decomposition of the matrix Σ, two parts are obtained: variance components σ2

i and
Brevis–Pearson correlation matrix P = (ρij). The partial correlation matrix Z = (ζij)
is composed of the correlation coefficients between any two genes i and j with respect to
all other genes. The matrix Z is related to the inverse matrix P of the standard correlation
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coefficients. Their relationship is computed by the following equations [37]:

Ω = (ωij) = P−1 (10)

and
ζij = − ωij√

ωiiωjj
. (11)

In Eq. (10) the covariance matrix Σ can be used instead of correlation matrixP . Partial
correlation coefficients ζij are correlation coefficients of conditional bivariant normal
distributions of the genes i and j. Two variables distributed by the normal distribution, are
conditionally independent if and only if their partial coefficients are zeros. The conditional
independence of the random variables is determined by the zeros in the inverse correlation
matrix Ω.

To infer a GRN by the GGMs from data set, the correlation matrix P is estimated by
unbiased sampling of the covariance matrix:

Σ̂ = (σ̂ij) =
1

n− 1
(X − X̄)T(X − X̄) (12)

The estimation of partial correlation coefficients is computed by Eq. (10) and Eq. (11)
from sample correlation matrix. The elements from estimated correlation matrix Ẑ, which
differentiate from zeros, are determined by statistical tests. The network inference ends
with a visualization of correlation structure by a graph, whose edges correspond to nonzero
partial correlation coefficients.

The main disadvantage of the described classical GGMs is that they can be applied
when the number of experimental conditions n is greater than the number of genes p,
because they cannot calculate the partial correlations. Also the existence of an additional
linear dependence between the variables leads to multicollinearity, and the commonly
used statistical tests for GGMs selection are valid only for data with large number of
samples [36]. In the case when p > n covariance matrix is not positive definite, so its
inverse matrix cannot be found.

Therefore, an estimation of the covariance matrix is performed by shrinkage estima-
tors to obtain positive definite covariance matrix, and thus its inverse matrix could be
found [38, 39]. The present edges in the graphs are determined by model selection of the
network graphs.

4.5 Other models for GRNs inference

Besides the above mentioned models, numerous models for GRNs reconstruction are
proposed.

The Collateral-Fuzzy Gene Regulatory Network Reconstruction (CF-GeNe), proposed
by Sehgal et al., applies collateral assessment of the missing values [40]. This model uses
the fuzzy nature of gene coregulation, which is determined by fuzzy c-means clustering
algorithm. This clustering algorithm allows genes to belong to several clusters, i.e. bio-
logical processes. CF-GeNe can deal with missing values, noisy data and it determines
the optimal number of clusters.
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Fujita et al. have proposed a model of GRNs using sparse autoregressive vector in [41].
This model can infer the gene regulations in case when the number of samples is less than
the number of genes without using prior knowledge and it can handle the feedback loops.

The linear model in the finite state space infers gene regulations including discrete
and continuous aspects of the gene regulation [42]. This model assumes that gene activity
is determined by the state of the TFBSs, each binding sites can be located in one of the
final number of states, genes may be inhibited or they can have some activity and the state
of the binding sides depends on the TFs concentration.

Li et al. had proposed another model that uses the state space with hidden variables
for the GRNs reconstruction [43]. This model is dynamic and consists of observations and
states. The observations (O1, O2, . . . , OT ) are generated from the state (S1, S2, . . . , ST )
according to the formal model:

St = ASt−1 +Wt, Ot = BSt + Vt, (13)

where A denotes the transition state probability P (St | St−1) from state at time t − 1 to
t, B denotes the probability P (Ot | St) of observation to be determined by the state in
the same time point. The Wt and Vt represent the disturbances of the states and the
observations, respectively. This model can be considered as a subtype of DBNs. The
hidden variables include the regulatory motifs such as feedback loops and auto-regulation,
thus this model gives a significant contribution to the existing models.

A qualitative model for GRNs reconstruction that uses Petri networks is proposed
in [44]. This model, which is based on Boolean networks, uses minimization logic to
transform Boolean rules into Petri networks. It overcomes the super exponential number
of states in the Boolean networks depending on the number of nodes.

An optimized model for GRNs reconstruction based on differential equations has been
proposed. This model includes prior knowledge and it is suitable for inference of small
networks [33].

For hierarchical reconstruction of GRNs, Lee and Yang had proposed a model that
uses the clustering of gene expression data in [45]. It provides inference of regulatory
mechanisms for large-scale networks. This method uses the recurrent neural networks
to represent GRNs and applies the learning algorithm to update the important network
parameters in discrete time steps.

Another method called FBN, applies the clustering of gene expression data for obtain-
ing modules (clusters) and infers the gene regulations between clusters [46]. This method
uses fuzzy clustering to reduce the search space for Bayesian networks learning.

In [47], a feature dependency analysis across samples is performed in order to de-
termine regulators (miRNAs and TFs) that significantly describe common and subtype-
specific gene expression changes. To rank subtype-specific features, a score based on
increase in squared loss on samples, which belong to a subtype excluding the regulator
from the learned model, is used.

Liao et al. had developed a data decomposition method – NCA (network component
analysis) for reconstruction of regulatory signals and control strengths using partial and
qualitative network connectivity information [48]. This method is applied to transcription
regulatory network.
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5 Current trends – GRNs inference by integration of prior
knowledge

The GRNs inference based on gene expression data is a very complex and difficult task,
particularly because the present biological and technical noise in microarray data should
be considered. In addition, the number of experiments or conditions is less than the
number of genes whose expressions are measured. Such shortcomings of the microarray
data lead to insufficient precision and accuracy of inferred networks. To increase the
accuracy and precision, application of other types of biological data and prior knowledge
such as knowledge obtained from scientific papers, protein-DNA interactions data and
other available databases is needed [49, 50]. Biology capabilities to elucidate complex
systems come from the extended power to include prior knowledge and complementary
and various data types [51].

The method suggested by Li in [52] combines qualitative and quantitative biological
data for prediction of GRNs. This method uses parallel processing and multiprocessor
system to speed up the structural learning of Bayesian networks.

Based on comparison of the inference capabilities in [51,53], Ristevski and Loskovska
in [54] have suggested a novel model for GRNs inference which performs in two stages.
They have chosen the GGMs in the first phase of the proposed model, because they are
a good base for uncovering the “hub” genes. The GRNs structure G can be represented
by an adjacency matrix. The adjacency matrix entries Gij can be either 1 or 0, which
refers to the presence or absence of a directed edge between ith and jth node of the
network G, respectively. As a result of the first phase of the proposed model, a matrix of
prior knowledge Gprior is obtained, whose elements are computed by:

Gprior ij =


1
2

|pcorij |−pcormin

pcormax−pcormin
+ 1

2 ,

0 if |pcor ij | < pcormin or edge direction is from j to i,
(14)

where pcormax and pcormin are the minimum (set threshold) and maximum partial cor-
relation coefficient, respectively [54]. The obtained matrix of prior knowledge Gprior ,
whose entries Gprior ij ∈ [0, 1], presents a basis for the second phase of the proposed
model.

To integrate the prior knowledge obtained from first phase, the second phase de-
fines a function Gprior ′ as a measure of matching between the given network G and
the obtained prior knowledge Gprior [50]. The integration of prior knowledge Gprior
is according to the prior distribution of the network structure G, which follows Gibbs
distribution, given by the following equation [49, 50]:

P(Gβ) =
e−βGprior ′(G)

Z(β)
, (15)

where the denominator is normalization constant calculated from all possible network
structures Γ by the formula Z(β) =

∑
G∈Γ e−βGprior ′(G). In the second phase of the

proposed model, a structure Bayesian learning is carried out using Markov chain – Monte
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Carlo simulations [54]. This model has shown even better capabilities of GRNs inference,
compared to Boolean networks, DBNs and GGMs in the case when it was applied on
simulated datasets, as well as experimental data sets.

Beside gene expression data, the availability of heterogeneous -omics data (transcrip-
tomics, proteomics, interactomics and metabolomics), makes the network inference to
become more flexible. Various -omics data reveal different perspectives of regulatory
networks. Integration of these data and using prior knowledge can discover a more reliable
comprehension of the regulatory mechanisms. Hence, integration of heterogeneous data
and prior knowledge still remains challenging and partially unsolved topic in the inference
of regulatory networks.

6 Model validation

The validation of inferred GRNs represents an assessment of the quality of the inferred
network, compared to the available knowledge in so-called “gold standard” networks such
as TRANSFAC [55] and JASPAR [56]. To validate inferred gene regulatory interactions
using computational models, wet-lab biological experiments are needed. Commonly used
validation criteria are receiver operating characteristic (ROC) curve and area under the
ROC curve (AUC).

ROC curves are applied in the GRNs reconstruction for validation of inferred net-
works. In a graph between two nodes, it might be an edge or it might be no edge, or
expressed by the formalism of machine learning, each edge (instance) of the network
belongs to either positive (p) or negative (n) class, and classifier outcomes belong to
either class p or class n [57, 58].

For a given two-class classifier and test samples, four cases are possible:

• TP (true positive), if the instance is positive and it is classified as positive;

• FN (false negative), if the instance is positive and it is classified as negative;

• TN (true negative), if the instance is negative and it is classified as negative and

• FP (false positive), if the instance is negative and it is classified as positive.

The following rates are defined based on the defined TP , FN , TN and FP rates
[59, 60]:

tpr =
TP

P
=

TP

TP + FN
true positive rate (recall), (16)

fpr =
FP

N
=

FP

FP + TN
false positive rate, (17)

precision =
TP

TP + FP
, (18)

accuracy =
TP + TN

P +N
=

TP + TN

TP + FN + FP + TN
. (19)
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Fig. 4. The ROC curve and AUC value.

ROC curve is a plot of a function where on the x-axis the false positive rate (fpr )
– and on the y-axis – the true positive rate (tpr ) are applied (Fig. 4). The ROC curve
represents the ratio between sensitivity and (1 − specificity) [61]. When the ROC curve
is above the line y = x, the classification is better.

To facilitate comparison of inference capabilities, instead of ROC curve the area under
ROC curve (AUC) can be used. The AUC is the area covered by the ROC curve with the x-
axis, shown on Fig. 4. The statistical meaning of the AUC corresponds to the probability
that the classifier will rank a randomly selected positive instance higher than a selected
negative instance [57].

7 Models comparison

To provide comprehensive description about inference capabilities of GRN models I
present a summary of the described models in the previous sections. Models are compared
according to several important model attributes. Table 1 systematizes the advantages and
disadvantages of the above-described models for GRNs inference. Despite the advantages
and drawbacks of described models, inferred network edges, which are not present in
the regulatory databases, are indications for further experimental investigation to confirm
their presence/absence as true regulatory mechanisms.

Table 1. Atributes comparison between models for GRNs inference.

Model Advantages Disadvantages
Boolean
network [17]

simplicity;
enable analysis of large networks

two-state model;
information loss

REVEAL [16] multi-state model low number of genes;
greatly increase the number
of possible state transition

(continued on next page)
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Table 1. (Continued.)

Model Advantages Disadvantages
Bayesian
network [19, 20]

describe interactions between
genes;
deal with noisy data

cannot deal with time-series data
and feedback regulations;
NP-hard learning problem

DBN [24] time-series data;
hidden variables;
can use prior knowledge;
deal with missing data;
continuous and discrete states;
stochastic networks;
large scale data

accuracy depends on number
of selected genes and sampling
of time series data;
excessive computational time

DBN [29] increased prediction accuracy;
decreased computational time

requires more prior information
of the transcription regulation

Optimization
model [33]

works with prior knowledge and
time-series data;
finds solution with biological
plausibility and reliability

assumes linearity;
small number of genes

Model of GRNs
with the sparse
vector
autoregressive
model [41]

can infer GRNs when the number
of samples is lower than number of
genes without any prior knowledge;
deals with feedback loops

reconstructs medium scale GRNs

CF-GeNe [40] cope with noisy data and missing
values

works with clusters obtained
from fuzzy c-means clustering

Finite state linear
model [42]

combines the discrete and
continuous aspects of gene
regulation;
continuous time

finite state model formalism

State-space
model [43]

probabilistic framework to simulate
GRNs;
hidden variables;
determines an optimal threshold
value for discretization of the
expression data based on prior
knowledge

does not include a step to learn
the structure

Differential
equations
model [32]

good performance in case of small
scale networks;
great physical accuracy;
can model negative feedback loops

small numbers of genes;
parameters with unknown
experimental values are required;
difficult to describe non-additive
logics in gene regulation;
computational intensive

Difference
equations
model [32]

good performance in case of small
scale networks

small numbers of genes;
requires parameters with
unknown experimental values;
discrete model
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Table 1. (Continued.)

Model Advantages Disadvantages
Algorithm for
reverse engineering
with BOLS [31]

reveals GRNs using limited number
of experimental data points;
deals with noisy data

does not provide the confident
levels among interactions within
unit network

GGMs [36] can infer large GRNs the number of inferred edges
depends on the set threshold

Two stage model
integrating prior
knowledge [54]

integrates prior knowledge;
very competitive even better
inference capabilities for simulated
and microarray gene expression
data compared to other models;
can deal with feedback loops

no suitable for large scale GRNs
inference

Network
component analysis
(NCA) model [48]

locally accurate and
computationally tractable;
provides a very good fit to most
of the microarray expression data

difficult to measure transcription
factor activity (TFA);
connectivity between genes and
TFs is not atainable for all
organisms

8 Conclusions and further works

This survey and comparison of the models for inference of GRNs has shown that there
is still a need for development of models that can integrate the available biological prior
knowledge and other data such as ChIP-chip, ChIP-Seq and microRNA data. As was
shown in this overview, such knowledge significantly improves the accuracy of the in-
ferred networks.

By validation of the inferred networks, the main problem is the lack of “gold standard”
networks to which edges the presence/absence of inferred edges is confirmed. Inferred
directed edges, which are not present in the available biological regulatory databases,
should be clues for further experimental research to confirm their presence/absence as true
regulatory interactions. Furthermore, greater efforts should be made toward upgrading of
existing databases for regulatory mechanisms between genes, metabolites, proteins, their
complexes and other components that take part in the gene regulation. In addition, to
characterize the GRNs, combining gene expression microarray analysis and quantitative
trait loci (QTL) mapping should be conducted.
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