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Abstract. In this paper we describe various biological omics data (e.g. ge-

nomics, epigenomics, transcriptomics, proteomics, metabolomics and microbi-

omics) generated using high-throughput sequencing technologies. These omics 

data are generated in huge amounts and they follow the 6 V’s properties of big 

data. To discover hidden knowledge from this big omics data, complex network 

analysis is used. Biological complex networks such as gene regulatory and pro-

tein-protein interaction networks are appreciated resources for discovering dis-

ease genes and pathways, to investigate topological properties of the most im-

portant genes associated with particular disease. The inference of biological 

regulatory networks from different high dimensional omics data is a fundamen-

tal and very complex task in bioinformatics. Various big omics data have a 

great potential to uncover diverse perspectives of biological complex networks. 

Taking into account the properties of the big omics data, we suggest some di-

rection for further works. 
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1 Introduction 

Currently, there are several omics technologies for the analysis of biological samples 

such as: genomics, epigenomics, transcriptomics, proteomics, metabolomics, which 

make analysis on the level of genes, epigenome, transcriptome, proteome and metabo-

lome, respectively [9]. Advances in these omics technologies have enabled personal-

ized medicine at an extraordinarily detailed molecular level [10]. 

Recent studies have shown that miRNAs are one of the key player of regulation 

(i.e., many biological processes in metabolism, proliferation, differentiation, devel-

opment, apoptosis, cellular signaling, cancer development and metastasis). 

One of the most essential regulatory role of proteins is transcription regulation. 

Proteins that bind to DNA sequences and regulate the transcription of DNA, and 

hence gene expression, are called transcription factors. Transcription factors can in-

hibit or activate the expression of target genes. Techniques to measure the gene ex-

pression level in biological samples span from gene-specific techniques such as quan-
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titative polymerase chain reaction (qPCR) to high-throughput technologies such as 

microarray, serial analysis of gene expression (SAGE) or next-generation sequencing 

(NGS) (i.e., RNA-Seq) [11]. 

The inference of biological regulatory networks from different high dimensional 

omics data is an essential and very complex and computationally demanding issue in 

bioinformatics that demands high performance computing and development of suita-

ble algorithms. These huge amounts of experimental omics data have the 6 V’s prop-

erties of big data (volume, value, velocity, variety, veracity, variability) and hence 

they can be named as big omics data. 

Volume refers to the amount of generated and collected data, while the value re-

fers to their coherent analysis, which is valuable to the researchers. Velocity refers to 

data in motion as well as and to the speed and frequency of data creation, processing 

and analysis. Complexity and heterogeneity of multiple datasets define the variety of 

big data. Data quality, relevance, uncertainty, reliability and predictive value describe 

the veracity of big data, while variability is related to the consistency of data over 

time [8]. 

The remainder of this paper is structured as follows. Section 2 describes the con-

cept related to big omics data. The subsequent section describes the complex net-

works, whereas Section 4 describes the analysis of complex networks in biology, 

which is based on experimental high-throughput data. The last section provides con-

clusions and suggestions for future works. 

2 Big Omics Data 

Gene-specific techniques and high-throughput experimental technologies used in 

bioinformatics enable to be generated a huge amount of various biological omics data. 

These omics data and their mutual interactions can elucidate at systems and molecular 

level human diseases, such as cancer, and therefore provide the knowledge necessary 

to control clinical symptoms, to make better diagnosis, prognosis and to develop more 

effective treatment of diseases. The combination of these different layers of experi-

mental omics data can help to identify candidate target genes involved in cancer and 

other diseases. 
One of the most suitable manner to obtain better insights into this data, to infer 

non-observable interactions and to visualize connections, links and groups of entities 

is network analysis. Using network analysis enables obtaining multi-networks, which 

are defined as a set of N nodes that interact mutually in M different layers, where each 

layer reflects a distinct interaction that links the same nodes’ pair [1]. Multi-networks 

combine different layers of experimental data such as genomic, proteomic and molec-

ular interaction data and can be gene regulatory networks, microRNA-target net-

works, transcription factor-target and protein-protein interaction networks [1]. The 

aim of multi-network analysis is to discover unknown information on the structure 

and dynamics of the complex biological systems, as well as to discover which entities 

or genes are involved in the oncogenic processes or in other diseases [1]. 

Most common human disease such as obesity, autism, diabetes and schizophrenia 

are complex diseases, that is they are result of the combination of multiple genetic and 



 

environmental factors [10]. Moreover, also the microbiome has been related to many 

human diseases, mainly of metabolic origin, and for this reason it is attracting grow-

ing interest of scientists for the information it can provide about the onset and pro-

gression of these diseases. 
 The inference of biological regulatory networks from different high-dimensional 

omics data is a very complex issue in bioinformatics because of the requirement for 

high-performance computing and suitable algorithms that can be able to work in par-

allel. 

3 Complex Networks 

Networks are essential tools for modelling and analysis of complex interactions be-

tween entities in biology as well as in medicine, physics, neuroscience and technical 

and social networks. Once extracted from suitable data, networks enable understand-

ing the fundamental structures that control many complex systems by detection of 

high-order connectivity patterns [2]. Typical represents of these densely connected 

patterns or network subgraphs, are called networks motifs that can be categorized as 

feed-forward loops, open bidirectional edges, triangular motifs or two-hop paths. 

For instance, biological complex systems transit from one to another state, under-

lying a variety of phenomena from cell differentiation to recovery from disease [4]. 

To model behavior of biological systems, the most suitable manner is by using net-

works, whose nodes stand for dynamic entities such as genes, proteins, microRNAs, 

metabolites, miRNA-protein complexes, while the links and interactions among them 

are represented by network edges [4]. 

Biological complex networks such as gene regulatory and protein-protein interac-

tion networks are appreciated resources for discovering disease genes and pathways, 

to investigate topological properties of the most important genes associated with par-

ticular disease.  

Hybrid Functional Petri Nets (HFPNs) have been deliberately introduced to model 

biological networks [15]. Besides the coexistence of both continuous places associat-

ed with real variables (e.g. concentration levels) and discrete places (marked with 

tokens) allowed in Hybrid Petri Nets (HPNs), several additional features have been 

included: continuous transition firing rates can depend on the values of the input plac-

es and the weights of arcs can be defined as a function of the markings of the con-

nected places [14]. These, in turn, increase the modelling power of HPNs and their 

application in biological network analysis. 

Gene regulatory networks can indeed provide significant insights into the mecha-

nisms of complex diseases such as cancer. However, there are still challenging tasks 

to reconstruct these networks because of the complex regulatory mechanisms by 

which genes are influenced such as transcription factors concentration or availability, 

non-coding RNAs with different regulatory functions but also by the presence of gene 

or genomic modifications such as mutations, single nucleotide polymorphisms (SNP), 

copy number variations (CNV) or epigenetic modifications [6] [7]. Taking into ac-

count that gene expression is a product of complex interactions of many biological 



 

entities and processes, multi-omics data are required for more reliable networks re-

construction and for better performances.  

Since HPNs provide an appropriate way to represent protein concentration dynam-

ics being coupled with discrete switches, HPN modelling of gene regulatory networks 

has been considered by Matsuno et al. [16]. DNA modification, transcription, transla-

tion, post-transcriptional and translational modifications, are a number of stages 

whose representation would be required by a detailed modelling of gene regulatory 

networks. Regulatory networks are close controlled at transcriptional and post-

transcriptional level and their changes invoke changes in expression levels of genes 

that participate in protein-protein interactions or that are targets of miRNAs or of 

other regulatory non-coding RNAs. Indeed, the mutual interaction between miRNAs 

and their target genes or transcription factors makes miRNAs the most important 

players in gene regulation. For this reason miRNAs have a primary role in many hu-

man diseases, such as cancer, neurological disorders or syndromes, rheumatic, cardi-

ovascular and metabolic diseases [12]. 

4 Complex Networks Analysis 

Two main stages of network analysis are network reconstruction and network interro-

gation. Reconstruction or reverse engineering of biological networks is a data-driven 

inference of nodes (e.g. genes, proteins, miRNAs, metabolites, miRNA-protein com-

plexes) and edges among nodes. The aim of systematic network analysis, called net-

work interrogation, is to obtain optimal information insights from reconstructed net-

works. All data-driven interactions could be done using supervised, unsupervised and 

semi-supervised machine learning techniques [5]. Using these techniques could help 

to discover hidden patterns from big omics data and to predict complex phenotypes. 

Reverse engineering of gene regulatory networks, which employs high dimensional 

gene expression data, demands developing of robust and computational efficient algo-

rithms for network inference. These algorithms should resolve scalability and usabil-

ity of gene regulatory networks inferred from experimental omics data [3]. 

Biological networks are evaluated through the analysis of their properties, such as 

community detection and link prediction. 

Community detection in a complex network identifies groups of nodes that are 

densely connected to each other, but sparsely connected to the nodes that belong to 

the other groups in the network. To analyze the real network structure and the features 

of the complex networks as well as the community detection algorithms increasingly 

become a research challenging topic in the field of complex networks and big data. 

The identification of resulting communities of densely connected nodes is essential as 

they may help to reveal a priori unknown functional modules.  Most commonly used 

community detection algorithms are Louvain, Modularity optimization and Infomap. 

The aim of the Louvain algorithm is to maximize the outcomes of modularity of en-

tire community partition. 

In biological networks, the existence of a link between two nodes must be proved 

by usually very costly laboratory experiments [13]. On the other hand, omics data 

used in networks reconstruction may contain inaccurate information, which leads to 



 

erroneous link detection. Link prediction algorithms are used to identify these spuri-

ous links and to predict actual network links. 

5 Conclusion 

The development of new machine learning techniques and approaches make com-

monly used machine learning algorithms easy to be adopted by bioinformaticians and 

to become essential tools for the analysis of big omics data. 

As multiple omics technologies can provide a clearer picture of cell functions but 

also of alterations due to diseases, integration of these technologies with traditional 

clinical tests will become a routine in future clinical health and disease investigations. 

Big omics data of different nature have great potential to analyze complex biolog-

ical networks under different perspectives. Therefore, the integration of heterogene-

ous data for the inference of regulatory networks from available biological knowledge 

actually represents a theme of great interest for computer scientists. 
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