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Abstract - Modeling, simulation and discovering of 

interactions and regulatory mechanisms among networks’ 

nodes, is still a challenging task in the analysis of complex 

networks in many domains, such as biology, computer 

networks, social networks, physics and power systems 

analysis. Particularly, complex networks’ analysis in biology 

can provide a very significant insight to the relevant 

information for the biological processes, such as diseases, 

interactions and regulatory mechanisms. The aim of this 

paper is to describe and survey the application of complex 

network analysis in biology to comprehend the relationships 

in the complex dynamic processes and interactions in 

biological networks and their properties.  
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I. INTRODUCTION 

Nowadays in the era of big data, to understand 

molecular basis of various disease, huge amounts of high-

throughput data are created. Understanding the 

underlying diseases’ processes requires integration of 

numerous heterogeneous data and then to study the 

complex interactions and relationships among entities 

(i.e., genes, proteins, non-coding RNAs, metabolites). 

These relationships might belong to different types and 

they depict complex biological networks. 

To analyze, describe, control and monitor many real 

systems in biology, network theory, power systems, 

engineering, physics, social science, computer science, 

network analysis is a very promising and powerful 

method. The organization and behavior of complex 

systems can be represented by graphs and collection of 

automata [3]. Graphs are suitable to deal with the static 

properties of the complex systems. To study nonlinear 

dynamics of the systems that are represented with graphs, 

networks node should have discrete states such as Boolean 

networks. 

Networks provides very suitable and efficiently 

representation of large amounts of data, particularly those 

who have graph-based structures. The structure of many 

real systems is a graph that contains modules, often named 

as communities, consisted of cluster of densely 

interconnected nodes. The nodes within a module are 

densely linked, while nodes that belong in different 

communities are sparsely linked. The entities (nodes) in 

the same community represents functional units of the 

network that share similar behavior, common 

characteristics, interests, or are involved in the similar 

activities. 

Study of the network structure enables discovering of 

several organization fundaments of complex systems, the 

community structure and the network node degree 

distribution, whether the networks are scale-free, random 

or small-world networks. 

The edges in a complex network depict the interaction 

between nodes. As a result of these interactions, 

perturbations of one node can trigger off changes in the 

state of the other nodes [7]. These state alterations are 

important to control a network when it transits from an 

initial state to a desired state by handling the state 

variables of a subset of nodes. 

Such control of the complex networks plays a key role 

in the biological networks, such as protein-protein 

interaction networks, gene regulatory networks, cellular 

networks, brain networks, microRNA-mediated regulatory 

networks, metabolic networks etc.  

The remainder of the paper is structured as follows. 

Section II describe the common network properties, 

whereas the link prediction and community detection are 

described in the subsequent section. The models and 

software tools for modeling and analysis of biological 

networks are depicted in Section IV The last section 

provides concluding remarks and direction for further 

work in analysis of complex networks that are based on 

big omics data. 

II. NETWORK PROPERTIES 

To study complex networks, network properties such 

as diameter of the graph, nodes’ degree distribution, 

centrality measures, clustering coefficient, network 

motifs and graphlets should be taken into account. 

Let G(V, E) be a graph, where V is the set of vertices 

and E is the set of undirected edges and u,vV(G) are 

adjacent. The diameter of a graph is the maximal distance 
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The clustering coefficient C of a network is the 

average of Cv for all vV(G) in the network, and Cv is the 

clustering coefficient for node v: 
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where Ev is the number of edges between all the 

neighbors of v, and nv is the number of neighbors of v 

The clustering coefficient measures how connected 

are the neighbors of any node. The degree centrality 

measures the importance of the role vertex u plays in a 

graph by measuring the number of interactions u is 

involved in. Let the degree of the node (vertex) u be 

denoted as d(u) and given by: 
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where euiE(G). The degree centrality of vertex u is 

defined as Cd(u)=d(u)  

The betweenness centrality measures the importance 

of vertex u in a graph by measuring the proportion of 

paths between other vertices in G [6]. The betweenness 

centrality of w is given by the following equation: 
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where Suv is the number of shortest paths between u and 

v. 

Network motifs are small sub-graphs in a network 

such that when compared to randomized networks, their 

structures appear significantly more. Different motifs are 

found in different complex networks (the feed-forward 

loop, a 3-node motif etc.) 

Graphlets are all non-isomorphic connected induced 

graphs on a certain number of vertices, and by definition, 

they have the ability to capture all the local structures on 

a certain number of vertices. 

For instance, when gene regulatory networks are 

studied, several properties should be considered such as 

sparseness, scale-free topology, modularity and 

structurality of the network. The gene regulatory 

networks should be sparse, which means a limited 

number of genes regulates genes. Some genes in the 

network called "hubs" can regulate many genes, i.e. the 

out-degree of the nodes is not limited. Another important 

feature is the scale-free topology. Scale-free networks 

have the power distribution function of the connectivity 

degree. This property provides the robustness of the 

networks regarding the random topology changes. 

Structures with small connectivity follow the regulatory 

hierarchy. The structurality allows network 

decomposition into basic modular elements composed of 

several genes, called network motifs. The network 

modularity refers to the existence of clusters of highly co-

expressed genes and genes with similar function. 

Centrality measures for complex networks are used to 

identify important elements of the networks through their 

structural topological properties [6]. Each centrality 

measures cover a different aspect of vertex local or global 

importance in a given network. Complex network studies 

have shown that real complex networks have several 

important properties such as small-word effect, scale-free 

topology and community organization [6]. 

Real networks have additional properties that are not 

associated with their node degree distributions, such as 

degree correlations, local clustering and community 

structure [7]. Many real networks have nodes with one 

degree, so-called dead ends that can erode the complex 

system stability. 

III. LINK PREDICTION AND COMMUNITY DETECTION IN 

COMPLEX NETWORKS 

The high-order structures are small network subgraphs 

that are referred as network motifs. Network motifs such 

as feed-forward loops, two-hop paths, open bidirectional 

wedges and triangular motifs are network building blocks 

that are crucial to understand fundamental network 

functions, patterns and properties [11].  

Motif discovery is one of the essential research fields 

in complex networks in biology. These networks 

subgraphs that are usually considered as buildings blocks, 

Because of the algorithms’ complexity, heuristic 

approaches are commonly used to discover networks 

motifs. 

Nodes belonging to the same community in a network 

have a higher probability to share functional properties 

and hence detection of community can discover new 

functional relationships or characteristics of that network. 

Community detection algorithms search for the optimal 

community structure that represents network 

characteristics as better as possible [1]. To solve 

community detection problem, many heuristic algorithms 

are proposed such as those based on simulated annealing, 

swarm intelligence, genetic and evolutionary algorithms, 

generational genetic algorithm (GGA+). 

For community detection, two main types of 

algorithms are usually used: edge betweenness-based 

algorithm and modularity-based algorithm. The edge-

betweenness value of an edge e in a network/graph G is 

the fraction of all pairwise shortest paths that pass through 

e. When an edge e that bridges a graph is removed and 

graph is disconnected, that edge e has a very high edge-

betweenness value. Let a graph G is divided into k clusters 

and eii is the ratio of edges in cluster i and ai is the fraction 

of edges with at least one end in the i-th cluster. The graph 

modularity is calculated by the following equation: 
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When the percentage of the edges within the clusters 

are higher than ones with one node in a cluster, a higher 

value of Q is expected. The value of Q approaches to 1 

when there are only few inter-cluster edges [8]. 
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The graphs used to model complex networks are large 

and hence many problems in these networks are NP-hard, 

which make them to use suitable heuristic algorithms [8]. 

Connectivity in a graph denotes that any two of its 

nodes are connected by a path. A graph is k-connected if 

there are at least k disjoint paths between any two nodes in 

the graph. When the value of k is higher, the graph 

becomes more strongly connected. That means that 

networks with higher connectivity values k are more 

reliable and tolerant of node failures, compared to the 

networks with lower k values. 

To understand organization of a network, prediction of 

the missing links between networks nodes is needed. The 

link prediction problem is very challenging in 

contemporary computer science. The main goal of link 

prediction is to estimate the existence likelihood of 

unobservable links based on the known network topology 

and node attributes [5]. In complex network analysis, link 

prediction is used to reveal missing parts (e.g., of 

biological and social networks). 

To compare network properties, several commonly 

used network models should be considered, such as 

Erdős–Rényi random graphs, Barabási–Albert scale free 

networks, scale free networks that model gene 

duplication and mutations, geometric random graphs, 

geometric graphs that model gene duplication and 

mutations, stickiness-index based networks and 

generalized random graphs with the same degree 

distribution as the data [12]. 

Comparing of biological networks as a whole or partly 

is used to find their similarities. A comparison between 

two networks is made in pairwise alignment, whereas 

comparison of many networks in multiple alignment [8]. 

Entire networks are compared for similar species in global 

alignment, while similar subnetworks for diverse species 

are compared in local alignment [8]. When assessing 

similarity of two biological networks, topological 

similarity or node similarity can be calculated. 

IV. MODELS AND TOOLS FOR MODELLING AND 

ANALYSIS OF BIOLOGICAL NETWORKS 

Biological complex networks are consisted of nodes 

that represent biological entities, while edges represent the 

interactions among them. In protein-protein interaction 

networks, proteins are represented by nodes, as shown on 

Fig.1. Genes and interacting proteins are nodes in gene 

regulatory networks. Metabolic networks represent 

biochemical reactions in the cell that generate metabolism 

[8]. Besides these networks within the cells, brain 

networks, neural networks, phylogenetic networks are 

another type of biological networks outside the cell. 

Protein-protein interaction networks are present 

outside cells’ nucleus and detecting clusters and network 

motifs and aligning two networks are challenging tasks in 

biological complex network analysis. Network motifs are 

assumed to have basic functional and building blocks of 

an organism. Finding similar networks motifs in two or 

more organisms may be a clue for having common 

ancestry [8]. While network alignment between two or 

more networks is usually used to compare different 

networks and shows the similarities between networks. 

  

Figure 1: Protein-protein interaction network [14]. 

Clustering in biological networks is employed to find 

dense regions of significant biological activity that show 

sometimes diseases states of a particular organism [8]. 

The clustering in biological networks can be categorized 

as density-based clustering, hierarchical clustering, 

spectral clustering and flow-based clustering. A survey of 

computational approaches for reverse engineering of 

micro-RNAS-mediated and gene regulatory networks are 

given in [13], whereas computation approaches for 

detection of protein complexes from protein-protein 

interaction networks are given in [19]. 

Many tools are developed to model, simulate and 

analyze complex networks with highlight to their 

application in biology. Since the beginning of the 1990s, 

Petri nets became a powerful tool to model and simulate 

complex biological and biochemical networks [2] [4]. 

Petri nets formalism is suitable to model, simulate and 

analyze processes that occur in the complex systems. 

Their application for modeling of biological networks 

started in the early 1990s. A Petri net PN = (P, T, F, W, 

m0) is consisted of a finite set of places (P) and finite set 

of transitions (T) that are connected by directed arcs (F), 

while F(PT)(TP) is a finite set of arcs [4]. The 

tuple (P, T, F) is called a net and W is the weight function 

of the Petri net. The places, transitions and arcs are 

represented by circles, rectangles and directed arrows, 

respectively. Places can contain tokens drawn as dots. 

When tokens are assigned to places, a Petri net is 

configured and m0 is Petri net’s start configuration. When 

all pre-places represent more or equal token than the 

input arrow announced, then a transition has concession. 

If any transition has concession the transition can fire [4]. 

When the elements of a Petri net have more properties, 

then more types of Petri nets can be defined. 

Functional Petri net are those Petri nets whose arcs 

can represent functions and tokens can be represented by 

nonnegative integer numbers. When a transition can be 

controlled by a timer, timed Petri nets are introduced. 

Stochastic Petri nets are timed Petri net where each 

transition is provided by a random delay instead a fixed 
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value. Continuous Petri nets are those nets that use real 

positive numbers, instead integer numbers [4]. To model 

biological processes, a hybrid Petri nets are introduced, 

which have discrete and continuous transitions and 

places, as well as inhibitory and test arcs, as shown on 

Fig. 2. Such transitions, places and arcs provide 

interpretation of concentration of different biological 

entities, reactions, pathways and regulations. Another 

extension of the hybrid Petri nets by introducing hybrid 

functional Petri nets [2]. 

 

Figure 2: A Hybrid Petri net consisted of two continuous places, 

one discrete place and one continuous transition [15]. 

 

Very suitable software packages for modeling, 

analysis and simulation of complex networks in biology 

are Matlab with its toolboxes [17], R (programming 

language) with its R packages [18] and Cytoscape with its 

plugins [16] [9]. 

 

V. CONCLUSION AND FUTURE WORK 

To expedite the study of various biological processes, 

the analysis of network structural and graph theoretical 

properties are very important. To study properties of 

biological complex networks, as a further work 

development of suitable heuristic, parallel and distributed 

algorithms is needed. 

With recent advances in high-throughput technologies, 

a huge amount of biological omics data is generated. To 

store, analyze and query these biological data sets, graph 

databases are very promising data model. As a further 

work, more software applications and tools based on 

graph databases should be developed. Using graph 

databases can improve the biological network analysis, 

particularly the understanding the interactions among 

biological entities (nodes). 
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