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Abstract

This chapter describes biological backgrounds of regulatory relationships in living
cells, high-throughput experimental technologies, and application of computational
approaches in reverse engineering of microRNA (miRNA)-mediated and gene
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regulatory networks (GRNs). The most commonly used models for GRNs inference
based on Boolean networks, Bayesian networks, dynamic Bayesian networks, association
networks, novel two-stage model using integration of a priori biological knowledge, dif-
ferential and difference equations models are detailed and their inference capabilities
are compared. The regulatory role of miRNAs and transcription factors (TFs) in miRNAs-
mediated regulatory networks is described as well. Additionally, commonly used
methods for target prediction of miRNAs and TFs are described as well as most com-
monly used biological regulatory relationships databases and tools are listed. Themainly
validation criteria used for assessment of inferred regulatory networks are explained.
Finally, concluding remarks and further directions for miRNA-mediated and GRNs infer-
ence are given.

1. INTRODUCTION

Many biological, physiological, and biochemical molecular processes

occur simultaneously in living cells. Regulation of these processes is con-

ducting by inherited information contained in the organisms’ genome.

Inference of the mutual interactions between numerous components of

biological systems based on available experimental data for interactions

between DNAs, RNAs, proteins, and metabolites is needed to clarify and

represent existing regulatory mechanisms. These components and their

mutual interactions compose complex networks named as gene regulatory

networks (GRNs) [1]. Generally speaking, there are two approaches for

inferring of GRNs [2]:

• Mechanistic (or physical) networks that employ protein–DNA and pro-

tein–protein interactions (PPIs) data are usually named as transcription or

protein networks. The aim of this static networks modeling is to reveal

regulatory interactions on physical level, and

• Influence networksthat refer to the reverse engineering of GRNs based

on gene expression data and the inferred networks regard to gene–gene

interactions.

The GRNs structure is depicted by a graph consisted of nodes representing

the genes, proteins, metabolites, their complexes or even modules, and edges

that represent direct or indirect interactions between nodes. In the influence

GRNs, proteins and metabolites appear as hidden variables in GRNs, while

the only observable variables are gene expression data. These hidden vari-

ables might cover unobserved results that are not measured. Figure 1 illus-

trates the projection of interactions from the space of metabolites and

proteins into the space of genes. Dashed lines represent gene regulatory
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relationships, whereas the full lines depict the interactions among genes,

proteins, metabolites, and their complexes [3].

This chapter systematizes the different models for GRNs inference such

as Boolean, Bayesian, dynamic Bayesian, association networks, and other

models comparing their advantages and shortcomings. In addition, the role

of microRNAs (miRNAs) in posttranscriptional regulation and computa-

tional approaches for reconstruction of miRNA-mediated regulatory net-

works are explained. In addition, network topology and network

validation of the inferred regulatory networks are depicted.

This chapter is organized as follows. In Section 2, the biological and

experimental backgrounds of the cells’ regulatorymechanisms are presented.

Section 3 describes the computational backgrounds of the inference of
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Figure 1 Projection of GRNs in different spaces: gene, protein, and metabolic space.
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miRNA-mediated and GRNs. The following section provides more detail

description of most commonly used models for GRNs inference such as

Boolean networks, Bayesian networks (BNs) and dynamic Bayesian net-

works (DBNs), differential and difference equations system model, associa-

tion networks, and several other models. Computational approaches for

inference of miRNA-mediated regulatory networks and miRNA and tran-

scription factors (TFs) target prediction algorithms are depicted in

Section 4.5. The subsequent section describes the commonly used validation

criteria for assessment of applied models for inference of regulatory relation-

ships. Finally, the last section gives the concluding remarks and further direc-

tions toward inference of miRNA-mediated and GRNs.

2. BIOLOGICAL BACKGROUNDS OF CELL REGULATORY
MECHANISMS AND EXPERIMENTAL TECHNOLOGIES

Genes are fundamental physical and functional inheritance units of all

living organisms. The coding genes are templates for protein synthesis.

Other genes might specify RNA templates as machines for production of

different types of RNAs.

The process in which DNA is transcribed into messenger RNA

(mRNA) and proteins are produced by translation represents the well-

known central dogma in molecular biology. The first stage of gene expres-

sion is DNA transcription into RNA. Resulted RNA can be mRNA, if the

expressed gene is protein coding, otherwise it is noncoding RNA. Then the

second stage follows, in which mRNA translates into a sequence of amino

acids that composes a protein. When a protein is synthesized, the matching

protein-coding gene is expressed.

Only a small part of RNAs is codingRNAs, whereas the bigger part from

the genome of eukaryotes transcribes into noncoding RNAs. In the last

decade, several small noncoding RNAs such as miRNAs and small inferring

RNAs (siRNAs) are revealed [4]. The length of miRNAs is about 18–25

nucleotides [5]. To date, there are more than 1800 human miRNAs listed

in the miRBase database [6].

A regulatory relationship between amiRNA and anmRNAdenotes that

a change in the miRNA expression level will effect a change in the expres-

sion level of the target mRNA. Each of these miRNAs might regulate

expression of hundreds or even thousands of target mRNAs. MiRNAs reg-

ulate expression by more than 30% of coding genes [7,8]. MiRNAs cause

transcription cleavage or translation repression by connecting to their target
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mRNA [9]. MiRNAs regulate gene expression by inhibiting mRNA trans-

lation and/or lightening mRNA degradation. Recent in vitro and in vivo

studies have shown that miRNAs can inhibit translation initiation and sup-

port decay of target mRNAs. There are three different potentials not mutu-

ally exclusive manners of miRNA-mediated repression by destabilization of

target mRNAs, inhibition of translation initiation, or blocking of translation

after initiation.

The gene expression regulation on the posttranscriptional level taking

place by mRNA cleavage or translation repression with binding of miRNAs

to the 30-untranslated regions (30-UTRs) of target mRNA [10]. To identify

mRNAs regulated by silencing or overexpression of a specific miRNA,

quantitative real-time polymerase chain reaction is used [11].

Recent studies have shown that miRNAs are one of the key participants

of regulation in many biological processes in metabolism, proliferation, dif-

ferentiation, development, apoptosis, cellular signaling, cancer develop-

ment, and metastasis. MiRNAs are involved in cancer, rheumatic,

infectious cardiovascular and neuronal diseases, metabolic disorders (glucose

and lipid metabolisms), epigenetics (mitotically and meiotically heritable

gene expression changes not involving a change in the DNA sequence)

[7,8,12,13].

One of the most important regulatory functions of proteins is transcrip-

tion regulation. Proteins, which bind to DNA sequences and regulate the

transcription of DNAs and hence gene expression, are called TFs. TFs

can inhibit or activate gene expression of the target genes [14].

The gene expression levels indicate the approximate number of pro-

duced RNA copies from the corresponding gene, which means that gene

expression level corresponds to the amount of synthesized proteins. To

obtain gene expression data experimentally of many genes in a sample,

high-throughput technologies are used, such as DNA microarray, serial

analysis of gene expression (SAGE), quantitative polymerase chain reaction

(qPCR), as well as next-generation sequencing technology like RNA-

Sequencing (RNA-Seq).

The essential basis of DNA microarrays is hybridization between two

strands of DNA. This technology is used to measure the expression levels

of large numbers of genes simultaneously or to determine genotype of mul-

tiple regions of a genome. It is known as DNA chip or biochip used for

DNA detection, or to detect RNA that may or may not be translated into

proteins. SAGE technology produces a snapshot of the mRNA population

in a sample of interest. SAGE sampling is based on sequencing mRNA
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output, not on hybridization of mRNA output to probes, so transcription

levels are measured more quantitatively than using DNAmicroarray. qPCR

technology amplifies and quantifies a targeted DNA simultaneously,

whereas RNA-Seq is able to identify and quantify transcripts, perform

robust whole-transcriptome analysis on a wide range of samples at a given

time moment.

Besides gene expression data, other data types such as protein–DNA,

PPIs data, and miRNAs targets are needed to reveal regulatory relationships.

Experimentally, identifying of TF binding sites (TFBSs) on the genome

for particular proteins and to reveal protein–DNA interactions, chromatin

immunoprecipitation (ChIP)-based methods are used [15]. ChIP-chip

technology uses ChIP with hybridization microarrays (chips) to identify

the protein binding sites and their locations throughout the genome.

ChIP-chip technology uses short DNA sequences as probes. A population

of immunoprecipitation-enriched DNA fragments is produced and

enrichment of each probe from produced population is measured [16].

Differently, ChIP-Sequencing (ChIP-Seq) technology uses secondary

sequencing of DNA instead of microarray [15]. The sequencing technology

such as ChIP-Seq, RNA-Seq, and miRNA-Seq are very well-established

technologies.

TFs and miRNAs are in mutual interaction with more cis-regulatory

elements. Similarly to TFs, genes also contain binding sides for other TFs

that may be targeted by miRNAs. Thus, the mutual interactions between

miRNAs and TFs make miRNAs very important factors in the gene

regulation.

High-throughput techniques and data such as proteomics, trans-

criptomics, and miRNAomics lighten inference of large-scale miRNA-

mediated and GRNs. Integration of these different types of biological data

can significantly improve the accuracy and the reliability of the inferred

miRNA-mediated and GRNs [17].

3. COMPUTATIONAL BACKGROUNDS OF THE
INFERENCE OF MiRNA-MEDIATED AND GRNs

Theoretical studies of GRNs have started in the 1960s. The emer-

gence of experimental high technologies for discovering regulatory mech-

anisms such as DNA microarrays, ChIP-chip, ChIP-Seq, RNA-Seq, and

qPCR has provided huge amounts of gene expression, protein–protein,

and protein–DNA interactions data. Because the experimental wet lab
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technologies cannot measure mutual influences among all genes from one

organism’s genome simultaneously, computational methods are needed to

infer and reveal regulatory interactions between genes, miRNAs, TFs,

and other constituents that compose complex regulatory networks.

GRNs reconstruction is useful to elucidate disease-causing perturbations

in two different manners: changes in the interactions of the component

genes and changes in the cell type in which a gene is expressed, the magni-

tude of gene expression, the beginning time and time span of the transcrip-

tional activity [18].

Several models for GRNs inference have been developed, which are

based on the basic reverse engineering methods. However, these models

handle with only certain data types and inferred networks do not largely

match the real regulatory mechanisms. The reverse engineered networks

might contain many erroneous regulatory relationships. This shortcoming

is a motivation for developing of newmodels that can include a priori knowl-

edge and could be able to integrate heterogeneous data. Such inferred

GRNs should elucidate gene regulatory mechanisms more correctly and

more reliably.

Finding more accurate and reliable structures of GRNs from gene

expression data is a problem of machine learning known as structure learn-

ing, while the parameter learning aims to find parameters of inferred net-

works that match best to the true regulatory relationships. Both structure

and parameter learning of the reconstructed networks are challenging topics

that bring together learning techniques from artificial intelligence with bio-

informatics, functional genomics, and biostatistics [1].

In miRNA-mediated regulatory networks, TFs and miRNAs have very

important role. Determination of the TFs of the given genes is by using TF

binding matrix (motif )-based methods. TFBSs are usually short (around

5–15 basepairs) and regularly degenerate sequences. The sequence pattern

is presented by a matrix (motif ), whose entries give the probability distribu-

tion of DNA nucleobases adenine (A), cytosine (C), thymine (T), and gua-

nine (G) at each site. The motifs of TFs are concluded from known TFBSs

determined experimentally [19]. TRANSFAC [20] and JASPAR [21] pro-

vide major collections of currently annotated TF binding motifs. Predicted

TF targets can be determined by scanning promoter regions of given genes

with motifs.

In order to understand the multiple functions of miRNAs in biological

processes, it is crucial to determine their targets. Prediction of miRNA tar-

gets by using computational methods is often imprecise because the
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miRNA–mRNA interactions are relied on a limited sequence length of the

miRNAs seed region. Additionally, mRNA recognition is affected by the

sequence context around the target as well by factors that might halt miRNA

binding.

By inference of miRNAs-mediated and GRNs, several networks’ prop-

erties should be taken in consideration such as sparseness, scale-free topol-

ogy, modularity, and structure of the inferred networks [2].

The inferred regulatory networks should be sparse. It means that a lim-

ited number of nodes regulate the other nodes. Some nodes in the network

called hubs can have regulatory relationships to many targets, i.e., the out-

degree of the nodes is not limited.

Another important feature of the inferred regulatory networks is their

topology, which should be scale free. Scale-free networks have the power

distribution function of the nodes connectivity degrees [22]. This property

provides the robustness of the inferred networks considering the random

topology perturbations.

Structures with small connectivity follow the regulatory hierarchy. The

networks structure allows decomposition of a network into basic modular

units composed of several nodes, called network motifs [2]. Modularity of

the networks regards to the presence of clusters of highly coexpressed

genes/miRNAs and/or genes/miRNAs with similar function.

4. MODELS FOR GRNs INFERENCE

A plethora of models such as Boolean networks, BNs, DBNs, Petri

nets, graphical Gaussian models (GGMs), linear and nonlinear differential

and difference equations, information theory approach, state space models,

fuzzy logic models, two-stage model that integrates biological a priori knowl-

edge, and many other models are utilized to reverse engineer GRNs. GRN

models extend from maps of genetics interactions, physical interaction

graphs to models that cover the gene expression kinetics, and hence network

dynamics.

4.1 Boolean Networks
The model based on Boolean networks is one of the simplest models for

GRNs inference. A Boolean network is presented by graph whose nodes

present the genes and the edges between nodes represent the regulatory

interactions between genes. In this model, gene expression data are
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discretized and presented by two values: 1 or 0. If the gene expression is

above a set threshold, the corresponding state is 1, otherwise 0.

The network diagram shown in Fig. 2A is not sufficient to understand

logical dependencies between genes. The aim of the reverse engineering

in Boolean networks is to find Boolean functions of every gene in the net-

work, so discretized values of gene expression can be explained by themodel

as shown in Fig. 2B. Alternatively, Boolean networks can be represented by

state transitions table presented in Fig. 2C.

The small changes in gene expression time series data cannot be

encompassed by two-level discretization, because it leads to information

loss. Thus, inferred regulatory networks can be unrealistic and with errone-

ous interactions between nodes. Another weakness of Boolean networks is

the super-exponential number of all possible networks. If n is the number of

genes, then the number of all Boolean functions depends on n super-

exponentially and it is equal to 22
n

.

Several extended models based on Boolean networks have been pro-

posed. A REVerse Engineering ALgorithm (REVEAL) constructs a

Boolean network of given gene expression data by setting the genes

in-degree values to k[23]. This algorithm derives minimal network struc-

tures from the state transition tables of the Boolean network by using the

mutual information approach. If n is the number of nodes, the number of

all possible networks is given by:

A B C

A�=B

B�=A∨C

C�=(A∧B) ∨(B∧C)∨ (A∧C)

0 0 0 0 0 0

Inputs Ouputs

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 1 1 1

1 0 0 0 1 0

1 0 1 0 1 1

1 1 0 1 1 1

1 1 1 1 1 1

A� B� C�

A� B� C�

A

B

A
C

B C

Figure 2 A Boolean network presented by (A) a wiring diagram, (B) Boolean functions,
and (C) a state transition table.
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22
k n!

n�kð Þ!
� �n

(1)

REVEAL can be applied on gene expression data discretized on

multiple-value levels. On the other hand, multiple discretization levels

increase the number of potential state transitions. Thus, the number of all

possible networks is significantly greater than the number of networks

derived from two-level Boolean networks. REVEAL has better inference

capabilities for smaller in-degree value k. For greater in-degree k, parallel

processing and efficiency increasing of the search space of all possible net-

works are needed [23].

The models based on Boolean network simplify the structure and

dynamics of gene regulatory relationships. They are deterministic, i.e.,

the state space is restricted and these networks reach the steady state or fall

into dynamic attractor [24]. The inferred networks provide only a quanti-

tative measure of gene regulatory relationships.

Probabilistic Boolean networks model is another model composed of

several Boolean networks that work simultaneously [25]. All networks share

information about the states of whole system. When a network transits in

next state, the remaining networks are synchronized.

4.2 Bayesian Networks
BNs are among the most effective models for GRNs inference. A BN is spe-

cial type of graph defined as a triple (G, F, q), where G denotes the graph

structure, F is the set of probability distributions, and q is the set of param-

eters for F[26]. The graph structureG includes a set of n nodesX1,X2, . . .,Xn

and a set of directed edges between nodes. The nodes correspond to the ran-

dom variables while directed edges show the conditional dependences

between the random variables.

A directed edge from the node X to node Y is denoted as X!Y , which

means thatX is a parent node of Y, denoted as pa(Y), and Y is a child node of

X. If the node Z can be attained by following a directed path starting from

node X, then the node Z is a descendant of X, and X is ancestor of Z. Nodes

and edges together have to make a directed acyclic graph (DAG). One

directed graph is acyclic if there is no directed path X1!X2 ! . . .!Xn

such as X1¼Xn, i.e., there is no pathway starting and ending at the

same node.

The joint probability distribution of all network nodes is calculated by

the following equation:
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P X1,X2, . . . ,Xnð Þ¼
Yn
i¼1

P Xijpa Xið Þð Þ (2)

where multipliers are local probability distributions. This factorization of the

joint probability distribution on multipliers facilitates its computing as a

product of simpler conditional probability distributions.

GRNs inference using BNs is accompanied by structure and parameter

learning. Structure learning aims to find network structure that fits best the

real regulatory relationships. Similar to Boolean networks, the number of

possible DAGs also super-exponentially depends on the number of nodes

of the BNs. For a given network structure, the parameter learning includes

estimation of the unknown model parameters for each gene. Parameter

learning determines conditional dependencies between network nodes.

Because the network inference using BNs is an NP-hard problem, BNs

are the most suitable when they are applied to small-scale networks com-

posed of tens to hundred genes [27].

It is possible to infer GRNs by BNs based on static, dynamic, discrete, or

continuous gene expression data. If the node variables are continuous, then

network inference is more complicated to perform because of the additional

complex computations concerning learning of BNs.

BNs are able to deal with stochastic nature of gene expression profiles as

well as with their incompleteness and noise. The main difficulty in BNs

learning is the higher number of genes compared to the number of condi-

tions and incapability to handle feedback loops that exist in the real GRNs.

Friedman et al. [28] have introduced a framework for discovering inter-

actions between genes based on microarray data using BNs by modeling of

each variable with conditional probability distribution function related to

other variables. In the proposed approach, two comparative experiments

are conducted for different probability distributions: multinomial distribu-

tion and linear Gaussian distribution. The main shortcomings of this model

are nonconstraints search heuristics on the search space and nonusing a priori

biological knowledge.

4.3 Dynamic Bayesian Networks
BNs can represent probabilistic relations between variables without consid-

ering time lags and they cannot deal with time series data [29]. However,

regulatory interactions in the real GRNs do not occur simultaneously, so

there is a particular time lagging. Another disadvantage of BNs is that they
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cannot represent real biological systems in which exist mutual interactions

between entities of biological systems such as feedback loops [30].

These shortcomings make BNs inappropriate for GRNs inference from

time series gene expression data, because it is necessary to include dynamic

(temporal) features of gene regulatory relationships. Thus, BNs are extended

to cover temporal features by introduction of DBNs. Supposing that the

changes in time series gene expression data occur in a limited number of dis-

crete time intervals T. Let X ¼ X1,X2, . . . ,Xnf g is a set of time-dependent

variables, where Xi[t] is a random variable representing the value of Xi at the

time point t and 0� t�T . A DBN is a BN that contains the T random vec-

tors Xi[t] [31], an initial BN, a transitional BN consisted of transition DAG

G!, and transitional probability distribution P!:

P! X t +1½ � ¼ x t+1½ �jX t½ � ¼ x t½ �ð Þ (3)

Then, joint probability distribution of the DBN is computed by:

P x 0½ �, . . . ,x T½ �ð Þ¼P0 x 0½ �ð Þ
YT�1

t¼0

P! x t+1½ �jx t½ �ð Þ (4)

From Eq. (4), for each x at each time point t, the following is obtained:

P x t+1½ �jx 0½ �, . . . ,x t½ �ð Þ¼P x t+1½ �jx t½ �ð Þ (5)

Equation (5) denotes that the variables values at time point t depend on

the values of variables at the previous time point t-1 and no other informa-

tion is required, i.e., DBNs have Markov property [32].

For probabilistic inference of DBNs, the standard algorithms used in BNs

inference can be used, too. However, in the case of large-scale networks,

learning of DBNs becomes too complex.

DBNs are effective for GRNs inference when they combine other types

of biological data. An example for that is the proposedmethod that integrates

gene expression data with a priori biologic knowledge about TFBSs using

DBNs and structural expectation–maximization algorithm [33].

Daly et al. had used high-order DBNs to model time lag gene regulatory

interactions based on time series gene expression data [34].

Figure 3 illustrates a DBN that describes cyclic regulation between gene

1 and gene 2 in different time points (red arrow lines; dark gray in the print

version), although the graph does not contain obviously cyclic pathway.

A manner how DBNs can be employed for network inference and how

they can be learned, their relationship with the hidden markov model
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(HMM), Boolean and stochastic Boolean networks, and DBNs with contin-

uous variables is presented in Ref. [35]. Moreover, Boolean networks, linear

and nonlinear equations models can be considered as a special case of DBNs.

To overcome the high complexity needed for GRNs inference by

DBNs, a model with constraint of the potential regulators has been pro-

posed [36]. This constraint considers those genes that have changes in gene

expression level at the previous or at the same time points regarding their

target genes. The proposed model uses the time lag of changes in expression

levels of regulator and target genes, which increases the accuracy of the

inferred networks. The time points of initial over- or under-regulation of

the genes are determined. The genes with changes in previous and current

time points are denoted as potential regulators to those genes with expres-

sion changes in the following time points. In such a way, a subset of potential

regulators for every target gene is chosen.

Another approach named as Bayesian Orthogonal Least Squares (BOLS)

for inference of GRNs is proposed in Ref. [37]. This approach combines

the orthogonal least squares, second-order derivatives for network pruning,

and BN. In the inferred networks, that are sparse, only limited number of

genes regulates every gene and the number of false inferred regulatory

relationships is small.

An effective algorithm for structure learning as an extension of K2 algo-

rithm is proposed in Ref. [38]. This algorithm is utilized for learning of

large-scale BNs by introducing sorting of the genes to improve the efficiency

y1(0) y1(1) y1(2) y1(N)

y2(0) y2(1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

...

...

y2(2) y2(N)

yG(0) yG(1) yG(2) yG(N)

Figure 3 A GRN inferred using DBNs applied on an input time series gene expression
data for G genes whose expression is measured in N time points.
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in the large-scale network inference. The assessment of the efficiency of the

proposed algorithm is performed by performing Monte Carlo simulation

and then comparing to the greedy hill-climbing algorithm.

4.4 Association Networks
Association networks are static networks that can describe the possible struc-

ture of the GRNs by an undirected graph. They can be applied on time

series and steady-state gene expression data. If two nodes/genes are con-

nected by an edge, then it is not possible to determine which gene is regu-

lated and which one is regulator. To identify which genes are coexpressed

and where should be an edge, similarity metrics such as Pearson coefficient

or mutual information is applied and additionally a threshold is set. For

higher set threshold values, the inferred GRNs are sparser.

Although the association networks do not determine the edges directions

in the networks, they are suitable to be employed in inference of large-scale

networks because of their low computational costs [2]. The directions of the

regulatory interactions can be determined by computing the similarity

between genes, their possible regulators, and with additional knowledge

about interaction with TFs.

A proposed algorithm ARACNE is based on mutual information

between gene expression data [39]. It defines the network edges as statistical

dependences, whereby the directed regulatory relationships using data

about TFs and their TFBSs can be determined. Using ARACNE, the

number of falsely predicted gene interactions in the networks can be re-

duced significantly. The computational complexity of this algorithm is

O N 3 +N 2M2ð Þ, where N is the number of genes and M is the number

of samples. The lower complexity makes this algorithm to be suitable for

inference of large-scale GRNs [39].

Very popular models are GGMs that use partial correlation coefficients to

determine the conditional dependencies between genes [40]. GGMs can

distinguish directed or undirected interactions between genes, unlike the

correlation networks where the edges correspond to correlation

between genes.

Let X is a gene expression data matrix with n rows and p columns,

where n is the number of experimental conditions and p is the number

of genes. Supposing that data entries from matrix X follow the normal

distribution NP(μ,Σ), where μ¼ μ1, . . . , μp

� �T

is the means vector and

Σ¼ σijð Þ1�i, j�p is a positive definite covariance matrix. The matrix Σ is
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decomposed of two parts: variance components σi
2 and Brevis–Pearson cor-

relation matrix P¼ ρij

� �
. A partial correlation matrixZ¼ ςij

� �
is composed

of the correlation coefficients between any two genes i and j with regard to

all other genes. The matrix Z is associated with the inverse matrix of the

standard correlation coefficients matrix P. Their relationship is given by

the following equations [41]:

Ω¼ ωij

� �¼P�1 (6)

and

ςij ¼� ωijffiffiffiffiffiffiffiffiffiffiffi
ωiiωjj

p (7)

In Eq. (6), instead of correlation matrix P, the covariance matrix Σ can be

used. Partial correlation coefficients ςij are correlation coefficients of condi-

tional bivariant normal distributions of the genes i and j. Two variables that

follow normal distribution are conditionally independent if and only if their

partial coefficients are equal to zero. The conditional independence of the

random variables is determined by the zero entries in the inverse correlation

matrix Ω.

To infer a GRN by using the GGMs from a data set, the correla-

tion matrix P is estimated by unbiased sampling of the covariance matrix,

given by:

Σ̂¼ σ̂ij
� �¼ 1

n�1
X�Xð ÞT X�Xð Þ (8)

The estimation of partial correlation coefficients is calculated by Eqs. (6)

and (7) from the sample correlation matrix. The entries from estimated cor-

relation matrix Ẑ, which differentiate from zero, are determined by statis-

tical tests. The network inference finishes with a visualization of correlation

structure by a graph, whose edges correspond to nonzero partial correlation

coefficients.

The main shortcoming of the described classical GGMs is that they can

be applied when the number of experimental conditions n is greater than the

number of genes p, because they cannot calculate the partial correlations.

The commonly used statistical tests for GGMs selection are valid only for

data with large number of samples [40]. If p>n then covariance matrix is

not positive definite, so its inverse matrix cannot be calculated. Also, the
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existence of an additional linear dependence between variables leads to

multicollinearity.

Therefore, to obtain positive definite covariance matrix, covariance

matrix estimation is performed by shrinkage estimators and thus, its inverse

matrix could be found [42,43]. Then, the edges in the graph are determined

by model selection of the network graphs.

4.5 Differential and Difference Equations Models
Concentration of RNAs, proteins, and other metabolites changes through

time. Therefore, differential equations systems can be an appropriate model

to describe gene regulatory relationships [44]. Ordinary differential equa-

tions (ODEs) systems use continuous gene expression data directly and

can easily cover positive and negative feedback loops.

The main constraint of this model based on ODEs is the assumed con-

stant or linear changes of the concentration of regulators, although their

changes through time are actually nonlinear.

The dynamics of gene expression data changes is described by the follow-

ing differential equation:

dx

dt
¼ f x, p, u, tð Þ (9)

where x tð Þ¼ x1 tð Þ,x2 t, . . . ,xn tð Þð Þð Þ is a vector of gene expression data for n
genes at time t, f is the function describing the changes of variables xi
depending on the model parameters p and external perturbations u. GRNs

inference aims to determine the function f and parameters p for given mea-

sured signals x and u at the time t[2].

Equation (9) can have more solutions, so structure and parameters iden-

tification of the model requires identification of the function f based on a

priori knowledge or some approximations. The function f can be linear or

nonlinear and when this function is nonlinear, to simplify, its linearity is sup-

posed and Eq. (9) transforms into the following equation:

dxi

dt
¼
XN
j¼1

wijxj + biu, i¼ 1, . . . ,N (10)

where wij are entries of weight matrix W and parameters bi determine the

external disturbance u to gene expression. This model is also called a model

of regulatory matrices composed of weight coefficients wij that present the

regulatory dependences. If a weight coefficient is positive, then
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corresponding gene has activating role, while a weight coefficient is nega-

tive, then that gene has inhibitory role. If weight coefficients values are

zeros, then genes do not interact mutually.

In linear models, network inference from small number of samples is eas-

ier to carry out. The identification of function f and the parameters in the

nonlinear models is more difficult because the number of samples in gene

expression data is smaller than the number of genes and finding numerical

solutions is more complex.

Another way to describe the changes of gene expression is by using

S-systems with activating and inhibitory components, given by following

equation:

dXi

dt
¼ αi

YN
j¼1

X
gij
j �βi

YN
j¼1

X
hij
j (11)

where αi and βi are positive constants and hij and gij are kinetic exponents [2].
In these models, there are many parameters whose identification requires

carrying out numerous experiments, and therefore to find solutions, these

differential equations are approximated.

An optimized model for GRNs inference that uses known a priori

biological knowledge from available databases for genome, proteome,

transcriptome, and scientific literature has been proposed in Ref. [45]. This

model is based on differential equations whose particular solutions are

obtained by singular values decomposition. The obtained solutions are

optimized by using mathematical programming.

A special case of differential equations system is the model of pairwise

linear differential equations, proposed in Ref. [46]. In this model, it is sup-

posed that gene regulation can be represented by pairwise linear equations.

This model uses only gene expression data and neglects regulation on

posttranscriptional level.

Beside ODEs, difference equations can describe the dynamics of GRNs.

Unlike the differential equations models that deal with continuous variables,

the variables in the difference equations model are discrete. Discretization of

the gene expression data leads to information loss [44]. However, difference

equations are more suitable when time series gene expression data are available.

The change of gene expression data is described by the following equation:

xi t +Δtð Þ�xi tð Þ
Δt

¼
XN
j¼1

wijxj tð Þ+ biu, i¼ 1, . . . ,N (12)
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Difference equations model can be transformed into a system of

linear algebraic equations that can be solved easily by linear algebra

methods [2].

4.6 Other Models for Inference of GRNs
Besides the above-mentioned models, numerous models for GRNs recon-

struction are proposed.

Collateral-Fuzzy Gene Regulatory Network Reconstruction (CF-

GeNe), proposed by Sehgal et al., applies collateral assessment of the missing

values [47]. This model utilizes the fuzzy nature of gene coregulation deter-

mined by fuzzy c-means clustering algorithm. This clustering algorithm

allows one gene to belong to several clusters, i.e., biological processes.

CF-GeNe can handle noisy data and missing values and it determines the

optimal number of clusters.

Fujita et al. had proposed a model of GRNs using sparse autoregressive

vector in Ref. [48]. This model can infer gene regulatory relationships when

the number of samples is lesser than the number of genes without using a

priori knowledge and it can deal with the feedback loops.

The linear model in the finite state space proposed in Ref. [49] infers

gene regulatory relationships including discrete and continuous aspects

of the gene regulation. The model assumptions are that gene activity is

determined by the state of the TFBSs, each binding sites can be located

in one of the final number of states, genes may be repressed or they can

have some activity and the state of the binding sides depends on the con-

centration of TFs.

Li et al. had proposed another model that uses the state space with hidden

variables for the GRNs reconstruction [50]. This model is dynamic and it is

consisted of observations and states. The observations (O1,O2, . . .,OT) are

generated from the vector of states (S1,S2, . . .,ST) according to the formal

model given by:

St ¼ASt�1 +Wt, Ot ¼BSt +Vt (13)

where A denotes the transition state probability P StjSt�1ð Þ from the state at

time t-1 to t, B denotes the probability P OtjStð Þ of observation to be deter-
mined by the state in the same time point, while Wt and Vt represent the

perturbations of the states and the observations, respectively. This model

can be considered as a subtype of DBNs. The hidden variables include

the regulatory motifs such as feedback loops and autoregulation.

128 Blagoj Ristevski

ARTICLE IN PRESS



A qualitative model for GRNs reconstruction employing Petri nets is

proposed in Ref. [51]. This model, which is based on Boolean networks,

uses minimization logic to transform Boolean rules into Petri nets. It over-

comes the super-exponential number of states in the Boolean networks that

depends on the number of nodes.

For hierarchical reconstruction of GRNs, Lee and Yang have proposed

a model, which uses the clustering of gene expression data [52]. This

model can infer regulatory relationships in large-scale networks. This

method uses the recurrent neural networks to infer GRNs and applies

the learning algorithm to update the main network parameters in discrete

time steps.

Another method called FBN, applies the clustering of gene expression

data to obtain modules (clusters) and then, it infers the gene regulatory

relationships between clusters [53]. This method uses fuzzy clustering to

reduce the search space for BNs learning.

4.7 Recent Models for Inference of GRNs by Integration
of A Priori Knowledge

The GRNs inference based on gene expression data is very complex and

difficult task, particularly because the present technical biological noise in

microarray data should not be ignored. Furthermore, the number of exper-

iments or conditions is lesser than the number of genes whose expression

profiles are measured. Such shortcomings of the microarray data lead to

unsatisfactory precision and accuracy of inferred networks, i.e., erroneous

edges in inferred networks. To increase the accuracy and precision,

employing other types of biological data and a priori knowledge such as

knowledge obtained from scientific literature, protein–DNA interactions

data, and other available databases is needed [54,55]. The capabilities of

these models to reveal complex systems come from the model extensions

by including a priori knowledge and using complementary and diverse data

types [56].

One such method is suggested by Li, which combines qualitative and

quantitative biological data for prediction of GRNs [57]. This method uses

parallel processing and multiprocessor system to speed up the structural

learning of BNs.

Based on comparison of the inference capabilities in Refs. [58,59],

Ristevski and Loskovska [60] have suggested a novel model for GRNs

inference, which performs in two stages. The first stage of the proposed

model uses GGMs, because they are a good starting point to reveal the
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“hub” genes. The GRNs structure G is represented by an adjacency

matrix, whose entries Gij can be either 1 or 0, which means presence

or absence of a directed edge between ith and jth node of the network

G, respectively. As a result of the first phase of the proposed model,

a matrix of a priori knowledge Gprior is obtained, whose elements are

computed by:

Gpriorij ¼
1

2

pcorij
		 		�pcormin

pcormax� pcormin

+
1

2

0, if pcorij
		 		< pcormin or edge direction is from j to i

8<
: (14)

where pcormax and pcormin are the maximum and minimum (set threshold)

partial correlation coefficient, respectively [60]. This matrix of a priori

knowledgeGprior, whose entriesGpriorij 2 0, 1½ �, presents a basis for the sec-
ond phase of the proposed model.

To integrate the a priori knowledge obtained in first phase, the second

phase uses a function Gprior0 as a measure of matching between the given

network G and the obtained a priori knowledge Gprior[55]. The integration

of a priori knowledgeGprior is according to prior distribution of the network

structure G, which follows Gibbs distribution, given by the following

equation [54,55]:

P Gjβð Þ¼ e�βGprior 0 Gð Þ

Z βð Þ (15)

where the denominator is normalization constant calculated from all possible

network structures Γ by the formula Z βð Þ¼
X
G2Γ

e�βGprior 0 Gð Þ. In the second

stage of the proposed model structure Bayesian learning using Markov chain

Monte Carlo simulations is performed [60]. The flow chart of this model is

illustrated in Fig. 4. This model has shown even better inference capabilities

of networks inference, compared to Boolean networks, GGMs, and DBNs

in the case when it was applied on experimental data sets as well as simulated

datasets [59].

Beside gene expression data, the network inference using available het-

erogeneous -omics data, like transcriptomics, proteomics, interactomics,

and metabolomics data, becoming more flexible. Integration of these data

and using a priori knowledge can contribute to achieve more reliable com-

prehension of the regulatory relationships.
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5. COMPUTATIONAL APPROACHES FOR INFERENCE
OF MicroRNA-MEDIATED REGULATORY NETWORKS

5.1 MicroRNA-Mediated Regulatory Networks
miRNAs repress translation of thousands of genes including TFs and hence

significantly affect many types of cellular processes. Mostly, miRNAs and

TFs regulate their mutual targets synchronously, composing complex net-

works named as miRNA-mediated regulatory networks [19]. The network is

structured by the nodes and edges as connections between nodes. The nodes

can represent TFs, miRNAs, target genes of miRNAs and TFs, and regu-

lators of miRNAs, while the edges representing the regulatory relationships

between the nodes. Figure 5 shows an miRNA-mediated regulatory net-

works, where full lines present transcriptional level regulation, whereas

dashed edges present regulation on posttranscriptional level.

5.2 Types of Regulatory Relationships
There are several types of regulatory mechanisms [62]:

• TF regulates gene expression, denoted as TF–gene interaction. TFs can

regulate gene expression by repressing or activating their target genes

forming transcriptional regulatory networks.

Figure 4 The flowchart of the two-stage inference model that integrates a priori
knowledge [61].
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• TF regulates miRNA, denoted as TF–miRNA relationship. TFs are

playing the key role in regulation of expression of miRNAs. Identifying

the regulators of miRNAs is crucial to fully understand the miRNA-

mediated regulatory networks.

• MiRNA–TF denotes that miRNA regulates TF. MiRNA–TF regula-

tory networks play an important role as functional entity in the cell reg-

ulatory processes in different cell types including cancer.

• MiRNA regulation on gene expression is denoted as miRNA–gene. Sin-

gle miRNA targets hundreds of genes and even more, miRNAs often

acting together by overlapping their targets. This makes miRNAs key

elements in complex regulatory networks.

• Gene–gene interactions, which are covered in above-described GRNs.

• TF–TF or PPIs, forming PPI networks.

The most commonly used repositories, computational models, and tools

for inferring/revealing of mutual regulatory interactions between TFs,

miRNAs, and genes are listed in Table 1.

The most commonly used algorithms for the miRNAs target

predictions are TargetScan 6.2 [63], Diana-microT [64], miRanda—

microRNA Target Detection [65], miRTarbase [66], etc. These algo-

rithms use different combination of features to identify whether

particular sequence is a target of miRNAs or not. These algorithms

exhaustively search for structural indication suggesting the presence of

an interaction and they are often uncorrelated, which can lead to the

nonoverlapping prediction results. Impossibility to integrate in a single

model all possible interplaying options, which can influence the results

of the miRNAs targeting and different type of sequence resources

used as reference data set, is a shortcoming of the above-mentioned

methods.

miRNA

Target/
gene

Regulation on transcriptional level

Regulation on posttranscriptional level

TF

Figure 5 An miRNA-mediated regulatory network.
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Besides simple training-prediction model utilized in miRNAs targets

prediction, diverse machine learning algorithms had also been employed

such as support vector machines (SVMs) and random walk [19].

There are several computational methods to identify miRNA targets by

using sequence analysis, which do not deal with the temporal dynamics of

miRNA-regulated networks.

Table 1 Computational Models/Tools Used to Reveal Regulatory Relationships Between
miRNAs, TFs, and Genes
Type of
Interaction Repositories/Databases or Computational Models/Tools

TF–gene Match [88]

CircuitsDB [89]

Transcriptional Regulatory Element Database (TRED) [71]

Human Transcriptional Regulation Interactions database

(HTRIdb) [72]

TRANScription FACtor database (TRANSFAC®) [20]

mirGen 2.0 [90]

ChIPBase [91]

TF–miRNA Match [88]

CircuitsDB [89]

TransmiR [92]

ChIPBase [91]

Gene–gene Models listed in Section 4 of this chapter

miRNA–TF TargetScan 6.2 [63]

CircuitsDB [89]

miRNA–gene Diana-microT [64]

Tarbase 6.0 [73]

miRecords [74]

miRTarbase [66]

TargetScan 6.2 [63]

miRanda—microRNA Target Detection [65]

CircuitsDB [89]

doRiNa [93]

miRNA—Target Gene Prediction at EMBL [94]

TF–TF/PPI Biological General Repository for Interaction Datasets

(BioGRID) [76]

Human Protein Reference Database (HPRD) [77]

IntAct [78]

MIPS-Mammalian Protein–Protein Interaction Database (MIPS-

MPPI) [79]

KEGG [75]
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Schulz et al. had developed a tool named asMIRna Dynamic Regulatory

Events Miner (mirDREM) [67]. Reconstructing of dynamic regulatory net-

works bymirDREMcovers effects of TFs andmiRNAs on their targets over

time by integrating time series gene expression data with protein–DNA

interaction data and the miRNAs expression level and their binding activ-

ities to predict their targets.

In Ref. [68], a feature dependency analysis across samples is performed in

order to determine regulators (miRNAs and TFs) that significantly describe

common and subtype-specific gene expression changes. To rank subtype-

specific features, a score based on increasing in squared loss on samples,

which belong to a subtype excluding the regulator from the learned model,

is used.

Liao et al. had developed a data decomposition method—network com-

ponent analysis (NCA) for reconstruction of regulatory signals and control

strengths using partial and qualitative network connectivity information [69].

This method is applied on transcription regulatory network.

Ripoli et al. had proposed fuzzy logic approach to reveal miRNAs role to

gene expression regulation [70].

Sun et al. developed an integrative framework for miRNA–TF regula-

tory networks construction for glioblastoma multiforme (GBM) [62]. The

aim of this model is to identify GBM-specific miRNA–TF regulatory net-

work and critical miRNA elements in a given pathway. Although GRNs

modeling including TFs and miRNAs is very complex task, it will clarify

both directly and indirectly regulatory mechanisms and mutual interactions

between regulators and their targets. Computational models are very useful

to uncover these complex regulatory relationships, particularly because the

biological experiments’ processes are very expensive and time demanding.

Lai et al. presented a systems’ biology approach that combine data-driven

modeling and model-driven experiments to examine the role of miRNA-

mediated repression in GRNs [11]. Experimental approaches have constraints

when handling complex biological systems regulations on transcriptional and

posttranscriptional level by TFs and miRNAs. For mathematical modeling of

GRNs, the authors integrated data from literature, biological databases, and

experiments from different resources. Extracting experimental verified data

for transcriptional level regulators is from literature or databases such as

TRED [71], HTRIdb [72], TRANSFAC [20] or miRGen 2.0. Tarbase

6.0 [73], miRecords [74], and miRTarBase [66] provide information about

miRNA–gene interactions, while KEGG [75], BioGRID [76], HPRD [77],

IntAct [78], and MIPS-MPPI [79] are repositories for PPIs [11].
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Similar to protein-coding genes, the miRNA transcription is closely

controlled by upstream TFs. To discover the biological roles of the

miRNAs, their targets’ functions should be clarified. The miRNA expres-

sion and microarray data can be employed to examine specific TF–miRNA

regulations. Self-regulation of miRNA genes is a mechanism that works as a

buffering system for their expression modulation [80]. Feedback loops

between specific miRNAs and the upstream TFs are another type of regu-

latory relationships in the miRNA-mediated regulatory networks [80].

These feedback circular connections are very important units in balancing

TF and miRNA expression in the living organisms. Integration of more

feedback circuits that exist between miRNAs and TFs increases the biolog-

ical meaning, reliability, and complexity of the miRNA-mediated regula-

tory networks.

Le et al. suggested framework for complex regulatory network construc-

tion with three components: genes, miRNAs, and TFs [10]. Their model

performed in three steps: data preparation, BN learning and integration,

and network inference. The aim of the network inference is to find the

global network for the subgraphs that show the interactions amongmiRNAs

and TFs and network motifs composed of at least two regulators using net-

work motifs finding algorithms.

Most of the existing computational models and tools find out statistically

correlation and association between miRNAs and mRNAs. Correlation and

association are not necessarilymeasures that provide an insight into causal gene

regulation. Le et al. [81] refer the causal effects discovery as miRNA causal

regulatory relationships. Their method uses miRNAs andmRNAs expression

data and validates the causal effects of miRNAs on mRNAs assuming that

miRNAs and mRNAsmutually interact. This method can be used to identify

which gene set is casually regulated by particular miRNAs. Moreover, this

method can theoretically infer the causal associations between every pair

variables in the data set, for instance TFs, miRNAs, and mRNAs.

Pio et al. suggested semi-supervised learning approach for miRNA target

prediction [82]. Their approach, beside the positive examples, utilizes

unlabeled examples. The nontraditional classifier is learned using SVMs

algorithm to learn to combine the results of several prediction algorithms.

For validation of suggested model, a set of experimentally verified

miRNA–miRNA interaction frommiRTarBase and a set of miRNA target

prediction are used.

Examination of protein changes following miRNA knockout (tech-

nique in which one of an miRNA is inoperative/“knocked out” of the
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organism) or knockdown (technique by which the miRNAs expression of

an organism’s genome is reduced) is a helpful basis to assign the specific

interaction function [83]. The possibility of indirect effects can be difficult

to eliminate, because each miRNA can have many targets.

Laboratory experiments for characterization of individual regulatory

interactions can reveal much more information about these interactions.

By using expression data, target predictions and biological knowledge,

candidates for regulatory interactions can be obtained by pointing on the

messages predicted to be most responsive to the miRNA, coexpressed with

the miRNA in the related cells, in those regulatory networks’ nodes that

are subject of interest.

5.3 Robustness of miRNA-Mediated Regulatory Networks
A good procedure is to disturb only particular interaction and monitor the

phenotypic effects. A beneficial technique is disrupting a single miRNA–

target interaction by using antisense reagents that hybridize to the target site,

thus to disallow miRNA pairing. The phenotypic effects of these preserved

interactions are very challenging task, especially their detection in the wet

lab, although the simultaneously perturbation of all miRNA interactions

by their knocking out usually does not have considerable phenotypic

effects [83]. One of the more reasons of toleration of such disturbances

for miRNA targets, which are gene regulatory proteins, is the regulatory

network buffering. Many regulatory interactions, including many

miRNA–target interactions, belong to complex regulatory networks with

bifurcating pathways and feedback control enabling accurate reaction

regardless of an inoperative node in the network. With this ability to buffer

the effects of missing a node, such networks must be disturbed somewhere

else before the missing miRNA interaction has evident phenotypic

effects [83]. Perturbation of the miRNA node is expected to make the net-

work susceptive to discover the importance of the rest of regulatory nodes.

Recent studies have uncovered that target hub genes, which carry vast

number of TFBSs, are possible subject to massive regulation by many

miRNAs. It means that nodes with more connections will more probably

obtain new connections during time. The top genes with big number of

both miRNA binding sites and TFBS are boosted in the functions related

to development and differentiation of cells. Many of these target hub genes

are transcription regulators, proposing a crucial pathway for miRNAs to

indirectly regulate genes by repressing TFs [19].
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miRNAs could be also target of hub genes. There is a class of miRNAs

regulated by a large number of TFs, while the others are regulated by only a

few TFs. miRNA expression profiles in embryonic developmental stages

and adult tissues or cancer samples had disclosed that the miRNAs from

the first class have higher expression levels in embryonic developmental

stages, while the second class miRNAs are more expressed in adult tissues

or cancer samples.

Regulator hub genes are more likely to have interactions with miRNAs,

because they regulate large number of targets. miRNAs together with mas-

ter TFs prefer to coregulate their targets. Regulator hub genes are very

important constituents in the GRNs, since perturbations on them can dis-

turb functions of numerous target genes. As miRNAs buffer stochastic per-

turbations, their preference to regulator hub genes could provide robustness

of the regulatory network [19].

6. MODEL VALIDATION

Validation of inferred miRNA-mediated and GRNs represents an

assessment of the accuracy of the inferred networks, compared to the avail-

able knowledge in so-called “gold standard” networks. To validate regula-

tory relationships inferred by using computational models, reliable biological

experimental data are needed. In order to ensure more accurate and reliable

model prediction, validation of the model with the data that are not included

in the parameter estimation is required.

As commonly used validation criteria, receiver operating characteristic

(ROC) curve and area under the ROC curve (AUC) are used.

In a graph between two nodes, it might be or not an edge, or using the

formalism of machine learning, each edge (instance) of the network belongs

to either positive (p) or negative (n) class, and classifier results belong to

either class p or class n [84].

For a given two-class classifier and test samples, four cases can occur:

• True positive (TP), if the instance is positive and it is classified as positive;

• False negative (FN), if the instance is positive and it is classified as

negative;

• True negative (TN), if the instance is negative and it is classified as

negative;

• False positive (FP), if the instance is negative and it is classified as positive.

Based on the defined TP, FN, TN, and FP, following variables are defined

[85,86]:
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tpr (true-positive rate) (recall):

tpr¼TP

P
¼ TP

TP+FN
(16)

fpr (false-positive rate):

f pr¼ FP

N
¼ FP

FP+TN
(17)

precision:

precision¼ TP

TP+FP
(18)

accuracy:

accuracy¼TP+TN

P +N
¼ TP+TN

TP+FN+FP+TN
(19)

An ROC curve is a plot of a function where on the x-axis, the fpr—and

on the y-axis—the tpr are applied, as shown in Fig. 6. In other words,

an ROC curve represents the ratio between sensitivity and (1- specific-

ity) [87]. If the ROC curve is more above the line y¼x, then classification

is better.

To facilitate comparison of inference capabilities, the area under ROC

curve (AUC) can also be used. The AUC is the area covered by the ROC

curve with the x-axis, as shown in Fig. 6. The statistical meaning of the
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Figure 6 The ROC curve and AUC value.
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AUC corresponds to the probability that the classifier will rank a randomly

selected positive instance higher than a selected negative instance [84].

Alternatively, precision–recall operating characteristic (P-ROC, PR)

curve can be used as validation criterion, where on the x-axis recall and

on the y-axis precision are applied, as shown in Fig. 7.

7. CONCLUSION AND FURTHER WORKS

This overview of the most commonly used models for inference

of miRNA-mediated and GRNs has shown that there is still a need for

development of models that can integrate a priori knowledge in order to

increase models inference capabilities. Such a priori knowledge signifi-

cantly can improve the accuracy and biological reliability of the inferred

regulatory networks. Inferred network edges, which are not present in

the biological regulatory repositories and database, are indications for

further experimental analysis to confirm or reject their presence as true

regulatory relationships. Nevertheless, despite the advantages of described

models, it can be concluded that there is no “silver bullet” inference model,

which will have highly effective and accurate inference capabilities.

To assign the specific interaction function, a helpful base is protein

changes examination of following miRNA knockout or knockdown. Lab-

oratory experiments for characterization of individual regulatory interac-

tions can reveal much more information about regulatory interactions.

By validation of the inferred networks, the main problem is the lack of

reference “gold standard” networks. In addition, greater efforts should be

made toward upgrading of existing regulatory databases with confirmed reg-

ulatory relationships between genes, miRNAs, TFs, and the other compo-

nents involved in the cell regulatory processes.
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Figure 7 Precision–recall operating characteristics (P-ROC) curve.

139Overview of Computational Approaches of MicroRNA-Mediated and GR networks

ARTICLE IN PRESS



Various -omics data uncover diverse perspectives of regulatory net-

works. Hence, integration of heterogeneous data and using biological a priori

knowledge remains still challenging and partially unsolved issue in the infer-

ence of regulatory networks.
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